
Patmos Reference Handbook

Martin Schoeberl, Florian Brandner, Stefan Hepp,
Wolfgang Puffitsch, Daniel Prokesch

December 5, 2023

Copyright © 2014 Technical University of Denmark

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License. http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Preface

This handbook shall evolve to the documentation of the Patmos processor and the Patmos compiler. In the mean
time it is intended to collect design notes and discussions. The latest version of this handbook is contained as
LaTeX source in the Patmos repository in directory patmos/doc/handbook and can be built with make.

Acknowledgment

We would like to thank Tommy Thorn for the always intense and enjoyable discussions of the Patmos ISA
and processor design in general. Jack Whitham offered his experience with RISC ISA design and trade-offs.
Gernot Gebhard and Christoph Cullmann gave valuable feedback on the ISA related to WCET analysis. Sahar
Abbaspourseyedi has been working on the stack cache to verify the ideas and concepts presented here. We thank
Rasmus Bo Sørensen for fixing some documentation errors.

This work was partially funded under the European Union’s 7th Framework Programme under grant agreement
no. 288008: Time-predictable Multi-Core Architecture for Embedded Systems (T-CREST).

iii

Preface

iv

Contents

Preface iii

1 Introduction 1
1.1 Hello World . 1
1.2 Building Patmos . 1

1.2.1 A Few Assembler Instructions . 2
1.2.2 We Can Blink in Assembler . 2
1.2.3 A C Based Blinking LED . 2
1.2.4 Make Targets . 3
1.2.5 Download of ELF Files . 4
1.2.6 A More Complex Application and the Apps Folder . 5
1.2.7 Supported FPGA Boards . 6
1.2.8 Multicore Patmos . 6

1.3 Worst-Case Execution Time Analysis . 9
1.4 Getting Started with Patmos . 10

1.4.1 Hello World . 10
1.4.2 Assembler Programming . 11
1.4.3 I/O Programming . 12
1.4.4 Periodic Tasks . 13
1.4.5 Adding an IO Device to Patmos . 13
1.4.6 Further Steps . 13

2 The Architecture of Patmos 15
2.1 Pipeline . 15

2.1.1 Fetch . 15
2.1.2 Decode . 15
2.1.3 Execute . 15
2.1.4 Memory . 15
2.1.5 Write Back . 15

2.2 Local Memories . 15
2.3 Register Files . 15
2.4 Bundle Formats . 18
2.5 Instruction Formats . 18
2.6 Instruction Opcodes . 21

2.6.1 Binary Arithmetic . 21
2.6.2 Multiply . 23
2.6.3 Compare . 24
2.6.4 Predicate . 25
2.6.5 Bitcopy . 26
2.6.6 Move To Special . 27
2.6.7 Move From Special . 28
2.6.8 Load Typed . 29
2.6.9 Store Typed . 30
2.6.10 Stack Control . 31
2.6.11 Control-Flow Instructions . 32
2.6.12 Instruction List . 36

v

Contents

2.7 Exceptions: Interrupts, Faults and Traps . 37
2.7.1 Exception Vector . 37
2.7.2 Traps . 37
2.7.3 Return Information . 37
2.7.4 Resuming Execution . 37
2.7.5 Delayed Triggering of Interrupts . 38
2.7.6 Sleep Mode . 38
2.7.7 Cache Control . 38
2.7.8 Examples . 38

2.8 Dual Issue Instructions . 41
2.9 Assembly Format . 41

2.9.1 Instruction Mnemonics . 41
2.9.2 Inline Assembly . 41

2.10 Configuration and Default Setup . 42

3 Memory and I/O Subsystem 43
3.1 Local and Global Address Space . 43
3.2 I/O Devices . 43

3.2.1 CpuInfo . 44
3.2.2 Timer . 44
3.2.3 UART . 46
3.2.4 Deadline . 46
3.2.5 EthMac . 46
3.2.6 Memory Management Unit . 46

3.3 Stack Cache . 47
3.3.1 Stack Cache Manipulation . 47

3.4 Instruction Cache . 49
3.4.1 Method Cache . 49
3.4.2 Traditional Instruction Cache . 50

3.5 Data Cache . 50
3.6 Hardware Interface . 50

3.6.1 OCPcore . 51
3.6.2 OCPcache . 52
3.6.3 OCPio . 52
3.6.4 OCPburst . 54
3.6.5 Remarks . 55

3.7 Example I/O Device . 56

4 Application Binary Interface 59
4.1 Data Representation . 59
4.2 Register Usage Conventions . 59
4.3 Function Calls . 59
4.4 Sub-Functions . 60
4.5 Stack Layout . 60
4.6 Interrupts and Context Switching . 60

5 Implementation 63
5.1 Component Organization and Pipeline Structure . 63
5.2 Register File . 63
5.3 Resource and Fmax Numbers . 63
5.4 ALU Discussion . 64

vi

Contents

6 Build Instructions 65
6.1 Setup . 65

6.1.1 Ubuntu . 65
6.1.2 Mac OS X . 65
6.1.3 Windows 10 . 66

6.2 Building Patmos and the Compiler Tool Chain . 66
6.3 Quartus on Linux . 67
6.4 The Xilinx ML605 Platform . 69

6.4.1 Getting the Xilinx Configuration Cable to Work . 69
6.4.2 Updating the Patmos Cores with Aegean . 70

6.5 Testing . 70
6.6 ModelSim License . 71

7 Tools 73
7.1 Simulation, Emulation, and Execution . 73

7.1.1 pasim . 73
7.1.2 Patmos Emulator . 73
7.1.3 config_altera . 74
7.1.4 config_xilinx . 74
7.1.5 patserdow . 75
7.1.6 patex . 76

7.2 Patmos Developer Tools . 76
7.2.1 elf2bin . 76
7.2.2 pacheck . 76
7.2.3 paasm . 77
7.2.4 padasm . 77

8 The Patmos Compiler 79
8.1 Overview . 79
8.2 Compiling with the patmos-clang Driver . 79

8.2.1 Compiling and Linking C Programs . 80
8.2.2 Disassembling . 82
8.2.3 Debugging . 82
8.2.4 Various options . 83

8.3 platin – The Portable LLVM Annotation and Timing Toolkit 83
8.3.1 The PML File Format . 84
8.3.2 PML Architecture- and Tool Configuration . 84
8.3.3 Generating PML configurations . 88
8.3.4 Exporting PML Metainfo During Compilation . 89
8.3.5 Obtaining AIS Annotations . 89
8.3.6 Exporting Loop Bounds . 89
8.3.7 Example . 89

8.4 Patmos-clang C Frontend . 93
8.4.1 Inlining, Function Attributes . 93
8.4.2 Target Triples and Target Identification . 94
8.4.3 Inline Assembler . 94
8.4.4 Naked Functions . 94
8.4.5 Patmos Specific IO Functions . 95
8.4.6 Scratchpad Memory . 95
8.4.7 Placing Functions into the Instruction Scratchpad . 95

8.5 Patmos Compiler Backend . 96
8.5.1 ELF File Format . 96
8.5.2 LLVM backend fixups, symbols, immediates . 97
8.5.3 Assembler Syntax . 97

vii

Contents

8.5.4 Address Spaces . 98
8.6 Newlib . 99
8.7 Known Bugs, Restrictions and Common Issues . 99
8.8 New Version . 99

8.8.1 Installation & Building . 100
8.8.2 Changes from v1 to v2 . 100
8.8.3 Known bug and workarounds . 100

9 Potential Extensions 103
9.1 Multiply / Wait / Move from Special . 103
9.2 Bypass load checks data cache . 103
9.3 Merged Stack Cache Operations and Function Return . 103
9.4 Non-Blocking Stack Control Instructions . 103
9.5 Freeze Cache Content . 103
9.6 Unified Memory Access . 104
9.7 DMA Interface . 104
9.8 Data scratchpad . 104
9.9 Halt . 104
9.10 Floating-Point Instructions . 104
9.11 Prefetching . 104
9.12 Data Caches . 105
9.13 Instruction scratchpad . 105
9.14 Wired-AND/OR for predicates . 105
9.15 Deadline instruction . 106

10 Conclusion 107

Bibliography 109

viii

List of Figures

2.1 Pipeline of Patmos with fetch, decode, execute, memory, and write back stages. 16
2.2 General-purpose register file, predicate registers, and special-purpose registers of Patmos. 17

3.1 The reserve instruction provides n free words in the stack cache. It may spill data into main
memory. 48

3.2 The free instruction drops n elements from the stack cache. It may change the top memory pointer
m_top. 48

3.3 The ensure instruction ensures that at least n elements are valid in the stack cache. It may need to
fill data from main memory. 49

3.4 Pseudo code for the load and store instructions. 49
3.5 Layout of code sequences intended to be cached in the method cache. 50
3.6 Localization of OCP signals in the pipeline . 51
3.7 OCP levels in Patmos . 51
3.8 Timing diagram for OCPcore . 52
3.9 Timing diagram for OCPio . 53
3.10 Timing diagram for OCPburst . 55

8.1 Compiler Tool Chain Overview . 80
8.2 Bitcode and machine-code control-flow graphs for gen_sort. 102

ix

List of Tables

2.1 General ALU functions . 21
2.2 Multiplication functions . 23
2.3 Compare functions . 24
2.4 Predicate functions . 25
2.5 Typed loads . 29
2.6 Typed stores . 30
2.7 Stack control operations with immediates . 31
2.8 Stack control operations for registers . 31
2.9 Addressing modes of control-flow instructions . 32
2.10 Control-flow operations with immediate . 33
2.11 Control-flow operations with implicit register operands . 33
2.12 Control-flow operations with single register operand . 33
2.13 Control-flow operations with two register operands . 34
2.14 Patmos instructions with examples . 36
2.15 Exception unit device registers . 40
2.16 Default settings for the Patmos hardware, the emulator, the simulator, and the compiler. 42

3.1 Address mapping for local address space . 43
3.2 Address mapping for global address space . 44
3.3 I/O devices and registers . 45
3.4 CpuInfo device registers . 45
3.5 Boot data initialization information . 46
3.6 UART status bits . 46
3.7 Memory management unit device registers . 47
3.8 OCPcore signals . 52
3.9 OCPio signals . 53
3.10 OCPburst signals . 54

7.1 General options for pasim . 73
7.2 Memory Options for pasim . 74
7.3 Cache options for pasim . 74
7.4 Simulator options for pasim . 75
7.5 Options for patemu . 75

8.1 Options for patmos-clang that control the default behaviour of the linker 82
8.2 ELF relocation types . 96

x

Listings

1.1 A blinking LED . 3
1.2 A blinking LED . 4
1.3 A multicore blinking LED (c/cmp/cmp_example.c) . 7
1.4 Message passing on the Argo NoC (c/cmp/noc_example.c) . 8

2.1 Call . 34
2.2 Branch with cache fill . 34
2.3 Return . 35
2.4 Exception handler registration . 38
2.5 Interrupt enabling . 39
2.6 Fault handler example . 39
2.7 Interrupt handler example . 39

3.1 Companion object for the counter device . 56
3.2 Class for the counter device . 57
3.3 Configuring the processor to include our counter device . 57
3.4 Testing the counter device . 57
3.5 Chisel code for counting . 58
3.6 Measure execution time . 58
3.7 A writable counter . 58

8.1 Demo application that initialises and sorts an array. 90
8.2 Analysis report for the sort application . 91
8.3 Flow facts from LLVM and user annotations as reported by platin 92

xi

1 Introduction

Real-time systems need a time-predictable execution platform so that the worst-case execution time (WCET) can
be statically estimated. It has been argued that we have to rethink computer architecture for real-time systems
instead of trying to catch up with new processors in the WCET analysis tools [11, 4].

We present the time-predictable processor Patmos as one approach to attack the complexity issue of WCET
analysis. Patmos is a static scheduled, dual-issue RISC processor that is optimized for real-time systems.

1.1 Hello World

We can start with the standard, harmless looking Hello World:1

int main() {
printf("Hello Patmos!\n");

}

With the compiler installed it can be compiled to a Patmos executable and run with the simulator as follows:

patmos-clang hello.c
pasim a.out

However, this innocent example is quite challenging for an embedded system. We will be needing:

• A C compiler.

• An implementation of the standard C library. printf itself is a challenging function.

• A tool that understands the generated ELF file and can download the individual sections.

• A terminal (often a serial line) available on the target.

• A terminal program to run, as well as a serial line to be available on your test PC.

Therefore, we might start from a minimal assembler program and execute that in the simulator and emulator.
From that base we can build up to a multi-core version of Patmos that executes in an FPGA and bootstraps with
programs loaded via a serial port.

1.2 Building Patmos

The whole build process of Patmos,2 applications in assembler and in C, configuration of the FPGA, and download-
ing an application is Makefile based. The build of Patmos is within the patmos folder, therefore, the following
descriptions assumes you have changed to:

t-crest/patmos

The complete design flow (including the LLVM based C compiler) can execute in a Linux machine. The flow
without the C compiler should be able to execute in a Windows/Cygwin environment. Under Mac OS X all tools,
except Quartus, are working (ModelSim under wine). For FPGA synthesis and configuration Windows XP within
a VMWare virtual machine is a possible solution.

On a Linux box with the installed LLVM compiler and Quartus in your PATH, the complete build processes for
a Hello World is as follows:

1This example code is not part of the distribution, but can be put at any directory.
2Get the source from GitHub with: git clone git@github.com:t-crest/patmos

1

1 Introduction

make BOOTAPP=bootable-bootloader APP=hello_puts \
tools comp gen synth config download

However, this involves quite many steps. Therefore, we suggest doing some manual buildup to explore the full
build process and the possibilities.

As a start we build some tools (e.g., the assembler, simulator, file conversion utility, and the boot loader). This
has to be done once only.

make tools

1.2.1 A Few Assembler Instructions

We start with a very small assembler program that moves a few values into registers (see asm/basic.s). With
following make command the program is assembled and executed in the software simulator of Patmos.

make swsim BOOTAPP=basic

The simulator options are set to write out the register contents after each instruction. The emulator (the Chisel
based simulator) can execute the same program with following command:

make hwsim BOOTAPP=basic

This command assembles the application, executes the Chisel based hardware construction during which the
program is used to initialize the on-chip ROM, generates a C++ based emulator, compiles that emulator, and
executes it. The emulator shows the register content after each instruction.

Those two Patmos simulations, the software simulator and the Chisel based emulator, are used for a co-simulation
based test. In this co-simulation all available assembler programs are executed in both simulations and the register
out put is compared. The test can be started with:

make test

1.2.2 We Can Blink in Assembler

Assembler programming is just used for small tests. And on Patmos assembler programs end up in the boot ROM,
which means that a new processor needs to be generated and synthesized as shown below:

make asm BOOTAPP=hello gen synth config

This make command assembles a blinking LED example written in Patmos assembler. You can find the assembler
source in Listing 1.1 and in asm/hello.s.

1.2.3 A C Based Blinking LED

As a first real example we build the embedded version of Hello World, the blinking LED, from a C program. You
can find the C source in c/blinking.c.

make BOOTAPP=bootable-blinking comp gen synth config

Additionally to blinking an LED this program also writes alternating ‘0’ and ‘1’ to the serial port. Connect the
FPGA board to your serial port, open a terminal of your choice (e.g., gtkterm), connect to the serial port, set the
baud rate to 115200, no parity, and no handshaking. You should see alternating ‘0’ and ‘1’ sent out synchronous to
the blinking.

Note that the program name (blink) is prefixed by bootable-. The marker selects the right compiler settings
for a program that ends up in the Patmos on-chip ROM. As the on-chip memory is limited, only tiny programs are
supported in this execution mode.

Figure 1.2 shows the code for the embedded Hello World C program. Two constants (0xF0090000 and
0xF0080004) are the addresses of the IO devices LED and serial port. IO devices connected to Patmos are
connected to the local, uncached memory area. This is the same memory area where data SPM and NoC SPM are
connected. Therefore, to access them one needs to use the local load/store instructions. With the attribute _SPM the
compiler is instructed to emit the correct load and store instructions.

2

1.2 Building Patmos

Listing 1.1: A blinking LED
#
The embedded version of Hello World: a blinking LED
#
Expected Result: LED blinks
#

.word 56

add r7 = r0, 0xF0090000
addi r8 = r0, 1

loop: xor r9 = r9, r8 # toggle value
swl [r7+0] = r9 # set the LED

addi r1 = r0, 1024
sli r1 = r1, 10

wloop: subi r1 = r1, 1
cmpneq p1 = r1, r0

(p1) br wloop
addi r0 = r0 , 0
addi r0 = r0 , 0
br loop

1.2.4 Make Targets

A list of the most important make targets:

tools build of all tools, including the Patmos software simulator

asm assemble source (from folder asm)

swsim execute the Patmos simulator

hwsim execute the Patmos emulator

emulator build the Chisel based C++ emulator

comp compile a C program as loadable ELF binary

bootcomp compile a C program as a bootable image TODO: This is probably outdated, needs to be checked

gen generate the Verilog code

synth synthesize for an FPGA

config configure the FPGA

download download an elf file into the main memory via the Patmos bootloader

test run all assembler tests

app compile an application that lives in c/apps/name

The name of an application that can execute from the on-chip ROM is set with the BOOTAPP variable.

3

1 Introduction

Listing 1.2: A blinking LED
/*

This is a minimal C program executed on the FPGA version of Patmos.
An embedded Hello World program: a blinking LED.

Additional to the blinking LED we write to the UART ’0’ and ’1’ (if available).

Author: Martin Schoeberl
Copyright: DTU, BSD License

*/

#include "include/bootable.h"
#include <machine/spm.h>

int main() {

volatile _SPM int *led_ptr = (volatile _SPM int *) 0xF0090000;
volatile _SPM int *uart_ptr = (volatile _SPM int *) 0xF0080004;
int i, j;

for (;;) {

*uart_ptr = ’1’;
for (i=2000; i!=0; --i)

for (j=2000; j!=0; --j)

*led_ptr = 1;

*uart_ptr = ’0’;
for (i=2000; i!=0; --i)

for (j=2000; j!=0; --j)

*led_ptr = 0;

}
}

1.2.5 Download of ELF Files

On a Linux box with the installed LLVM compiler and Quartus in your PATH, the complete build processes for the
Hello World is as follows:

make BOOTAPP=bootable-bootloader APP=hello_puts \
tools comp gen synth config download

You should see the download information and then the greeting from Patmos:

/home/martin/t-crest/patmos/install/bin/patserdow -v /dev/ttyUSB0 /home/martin/t-crest/patmos/tmp/hello_puts.elf
Port opened: true
Params set: true
Elf version is ’1’:true
CPU type is:48875
Instruction width is 32 bits:true
Is Big Endian:true
File is of type exe:true

4

1.2 Building Patmos

Entry point:131076

[++++++++++] 49778/49778 bytes
Hello, World!

EXIT 0

The Makefile use following variables to configure the build process: BOOTAPP is an application that ends in the
on-chip ROM. This may be an assembler program or a simple C program; most prominent the boot loader for ELF
binaries. A C program that shall be compiled as ROM target needs to be prefixed with bootable-. APP is a C
program resulting in an ELF binary that can be either loaded by the emulator or the boot loader when executing in
an FPGA.

When the FPGA configuration (the Patmos hardware) is stable and only the C application shall be recompiled
and downloaded use a simpler make command:

make APP=hello_puts comp config download

Here an example of the individual steps to build the blinking LED C hello world (on a different FPGA board):
TODO: Following is probably old info and generates a large .dat file: make BOOTAPP=bootable-echo bootcomp

gen

make tools
make BOOTAPP=bootable-echo gen
make BOOTAPP=bootable-echo BOARD=bemicro synth
make BOARD=bemicro BLASTER_TYPE=Arrow-USB-Blaster config

This split of the make commands is for demonstration. It is possible to merge all steps into a single make (on
Linux systems) or two steps when using two operating systems (e.g., Mac OS X for compilation and Windows or
Linux for synthesis).

Emulator and elf File The emulator can read a standard ELF file. An example how to compile a small C program
that uses part of the standard library and executing it on the emulator is as follows:

make emulator
make comp APP=hello_puts
patemu tmp/hello_puts.elf

1.2.6 A More Complex Application and the Apps Folder

Small code examples (single C files) are distributed in folder c and some subfolders (e.g., bootable, bootloader,
cmp,...) and compiled with a make comp APP=program.

Larger applications, such as an operating system for Patmos as RTEMS,3 live in their own repository.
Medium sized example applications shall be placed into its own folder within c/apps with the folders named

after the applications and containing its own Makefile to build the application. The compile process shall result in
an .elf named after the application name. The application can include other C code from the source tree directly,
e.g., to include library code. Therefore, we can avoid building too many tiny libraries.

The main Makefile contains the target app to compile the target and copy the .elf file into the local build
directory. Here is a trivial app example (living in c/apps/hello) consisting of two source files to do the “Hello
World” example, including compilation, configuration, and download to Patmos:

make app config download APP=hello

A more interesting multicore example, which also uses libcorethread code without building a library, can be
found in c/apps/bench.

3https://github.com/t-crest/rtems

5

1 Introduction

1.2.7 Supported FPGA Boards

At the time of this writing we have mainly focused on Altera FPGA based boards. Following boards are directly
supported in the build process:

• Altera DE2-115 (altde2-115), this is the default board for the project

• Altera DE2-70 (altde2-70)

• Altera/Farnell BeMicro (bemicro)

Setting the BOARD variable configures the board that shall be used. Without changing the Makefile the default
of the board (and any other build variables) can be overridden by providing a local config.mk that is included in
the Makefile.

1.2.8 Multicore Patmos

A multicore Patmos with shared external memory can be configured by changing the configuration file (e.g.,
hardware/config/altde2-115.xml) the cores count to the number of cores requested. Common configura-
tions for the DE2-115 board are 4 or 9 cores.

For the multicore configuration there are several multicore devices available, e.g., several network-on-chips,
shared on-chip memories, and a locking unit. By default, the configuration includes the locking unit configured
with a single lock used by the POSIX mutex implementation. If the multicore device configuration is overridden,
as below, and if POSIX mutexes are required, it is necessary to manually add the locking unit to the configuration.
The most important device is the Argo NoC. To enable it uncomment following lines in the configuration file:

<pipeline dual="false" />
<cores count="4"/>
<CmpDevs>
<CmpDev name="Argo" />
</CmpDevs>

The Argo NoC schedule is automatically generated when building Patmos. This generates a C file, nocinit.c,
containing the NoC schedule that is loaded into the network interfaces during booting.

The default platform is a 4-core multicore for the DE2-115 FPGA board. To use the 9 core version set cores
count to 9.

The synthesize, compilation, and download of the application is done as usual in the patmos directory.
TODO: We shall have here three simple hello world applications: (1) just plain shared memory 4 cores saying

hello - DONE -, (2) a CMP program that uses shared memory, and (3) a simple NoC setup.
Figure 1.3 shows the embedded Hello World example executing code on two cores and each core blinking its

own LED (each core is connected to one of the LEDs). FIXME: In the current version this does NOT work
anymore as all LEDs are now connected to a single core and not distributed to the cores.

Figure 1.4 shows a minimal program that uses the Argo NoC for message passing. One channel is setup from the
core 0 to the core 1. Core 0 sends a message containing an integer. Core 1 receives this data and write a modified
version into the shared field field, which is then read by core 0.

Shared Memory

The external shared memory is not held cache coherent with the core local data cache. There are three options how
to exchange data between cores in shared memory:

(1) use uncached access to access fields as follows:

volatile _UNCACHED static int field;

6

1.2 Building Patmos

Listing 1.3: A multicore blinking LED (c/cmp/cmp_example.c)
/*

This is multicore version of an embedded Hello World program:
two blinking LEDs executing on two cores.

Author: Martin Schoeberl
Copyright: DTU, BSD License

*/

#include <stdio.h>
#include <machine/patmos.h>

#include "libcorethread/corethread.h"

// Blink the individual LED of a core
void blink(int period) {

volatile _IODEV int *led_ptr = (volatile _IODEV int *) PATMOS_IO_LED;
volatile _IODEV int *us_ptr = (volatile _IODEV int *) (PATMOS_IO_TIMER+12);

int time = period*1000/2;
int next;

for (;;) {
next = *us_ptr + time;
while (*us_ptr-next < 0) *led_ptr = 1;
next = *us_ptr + time;
while (*us_ptr-next < 0) *led_ptr = 0;

}
}

// The main function for the other thread on the another core
void work(void* arg) {
int val = *((int*)arg);

blink(val);
}

int main() {

printf("Hello CMP\n");
int core_id = 1; // The core number
static int parameter = 1000;
corethread_create(core_id, &work, (void *) ¶meter);

blink(2000);

// the folowing is not executed in this example
int* res;
corethread_join(core_id, (void *) &res);

return 0;
}

7

1 Introduction

Listing 1.4: Message passing on the Argo NoC (c/cmp/noc_example.c)
/*

This is a minimal demonstration how to use the Argo NoC
with one message passing channel from core 0 to core 1.
The value is returned via a shared variable in main memory.

Author: Martin Schoeberl
Copyright: DTU, BSD License

*/

#include <stdio.h>
#include <machine/patmos.h>

#include "libcorethread/corethread.h"
#include "libmp/mp.h"

#define NUM_BUF 2
#define BUF_SIZE 100

// Whatever this contant means, it is needed
const int NOC_MASTER = 0;
// Shared data in main memory for the return value
volatile _UNCACHED static int field;

// The main function for the other thread on core 1
void work(void* arg) {

// create a channel
qpd_t *channel = mp_create_qport(1, SINK, BUF_SIZE, NUM_BUF);
// init
mp_init_ports();
// receive
mp_recv(channel, 0);
int data = *(volatile int _SPM *) channel->read_buf;
mp_ack(channel, 0);

// Return a change value in the shared variable
field = data + 1;

}

int main() {

printf("Hello Argo NoC\n");
int core_id = 1; // The core number
corethread_create(core_id, &work, NULL);

int data = 42;
// create a channel
qpd_t *channel = mp_create_qport(1, SOURCE, BUF_SIZE, NUM_BUF);
// init
mp_init_ports();
// write data into the send buffer

*(volatile int _SPM *) channel->write_buf = data;
// send the buffer
mp_send(channel, 0);
printf("Data sent\n");
printf("Returned data is: %d\n", field);
int* res;
corethread_join(core_id, (void *) &res);
return 0;

}

8

1.3 Worst-Case Execution Time Analysis

(2) invalidate the data cache. The data cache is per default configured as write-through. That means the main
memory contains the latest change on a write. Therefore, to get those latest change into a core that wants to read
those values the cache can be invalidated.

(3) use POSIX mutexes, which are currently available in libcorethread instead of pthread.h. By protecting the
shared data with a mutex, i.e., only accessing the data after locking the mutex, the cores are guaranteed to see the
most up-to-date value, as successfully locking a mutex invalidates a core’s data cache. The pattern for sharing data
using the mutexes is therefore: lock the mutex, read/write the data, unlock the mutex.

On-chip Application

For small experiments it is possible to execute a multicore program out of the on-chip memories. The Mandelbrot
demo is one example.

In directory aegean run:

make platform AEGEAN_PLATFORM=mandelbrot_demo
make synth config AEGEAN_PLATFORM=mandelbrot_demo

to generate (and synthesize) the mandelbrot application on a 4 core version of Patmos for an Altera DE2-
115 FPGA board. This application is compiled into the on-chip memories and therefore executing right after
configuration of the FPGA. Have a terminal open and connected to the serial port (115200 baud, 1 stop bit, no
handshake) during and after the FPGA configuration and you shall see the output of the mandelbrot calculation.

However, the approach to have the application in on-chip memory works for tiny programs only. Furthermore,
each software change needs a new synthesize run. A better approach is to build a platform that contains a bootloader
(similar to the single core version) and some startup code to synchronize the program start with the other cores.

Note that the usage of Aegean to generate and compile multicore versions of Patmos is deprecated.

1.3 Worst-Case Execution Time Analysis

Patmos is currently supported by two WCET analysis tools: the AbsInt tool aiT [5] (a3patmos) and platin also
contains a WCET analysis backend [6]. In the section we will give a minimal “Hello World” example for WCET
analysis with platin. We use following simple C program, where it is not obvious if the addition or multiplication
path is the WCET path.

#include <stdio.h>

// foo is the analysis entry point that would be inlined with -O2
int foo(int b, int val, int val2) __attribute__((noinline));
int foo(int b, int val, int val2) {

int i;

if (b) {
for (i=0; i<51; ++i) {
val = val * val2;

}
} else {

for (i=0; i<73; ++i) {
val = val + val2;

}
}

return val;
}

9

1 Introduction

// The compiler shall not compute the result
volatile int seed = 3;

int main(int argc, char** argv) {

int val = seed;
int val2 = seed+seed;
int b = seed/4;

int i = foo(b, val, val2);
// printf("%d\n", i);

return i;
}

To be able to analyze a program, the compiler needs to be instructed to ouput the program in .pml format during
compilation:

patmos-clang -O2 -mserialize=simple.pml simple.c

The WCET analysis with platin is excuted as follows:

platin wcet -i simple.pml -b a.out -e foo --report

Those commands assume a standard configuration of Patmos that is the default single core configuration with
the DE2-115 memory timing, which is for 4 32-bit bursts in 21 clock cycles for a cache line read or write. The
configuration of the different caches within Patmos is as the default is in the hardware configuration.

This folder patmos/wcet contains this minimal example to explore WCET analysis with platin for Patmos.
The two commands and further commands to explore the result are included in the Makefile.

TODO: Is the default really correct? Where does it come from?
More details on WCET analysis with platin can be found in Section 8.3. This section also includes a more

elaborated example in Subsection 8.3.7.

1.4 Getting Started with Patmos

These exercises are intended to make you familiar with the Patmos processor and the T-CREST tool chain. This
exercise assumes that you have the virtual machine (VM) image with the T-CREST tools installed and already
compiled. The T-CREST project is hosted at GitHub4 within several git repositories. You find those repositories
local in your VM under directory t-crest.

The Patmos processor source lives in directory patmos, the directory where you will do most examples.
If you want to setup the T-CREST toolchain native on your Linux (Mac) system, see the build instructions in

Chapter 6.

1.4.1 Hello World

We start with the standard Hello World:

main() {
printf("Hello Patmos!\n");

}

With the Patmos compiler installed and in the PATH it can be compiled to a Patmos executable and run with the
simulator as follows:

4https://github.com/t-crest

10

https://github.com/t-crest

1.4 Getting Started with Patmos

patmos-clang hello.c
pasim a.out

The Patmos distribution also contains a cycle accurate simulation of the processor, which we call emulator. You
can run the program on the emulator as follows:

patemu a.out

However, this innocent examples is quiet challenging for an embedded system: It needs a C compiler, an
implementation of the standard C library, printf itself is a challenging function, the generated ELF file needs to be
understood by a tool and the individual sections downloaded, and finally a terminal (often a serial line) needs to be
available on the target, and your test PC needs to have a serial line as well and a terminal program needs to run.

Therefore, we might start with a minimal assembler program and execute that in the simulator and emulator.
If you have not yet downloaded the handbook you can also build it on your VM:

cd t-crest/patmos/doc/handbook
make

1.4.2 Assembler Programming

All compilation and generation is based on Makefiles.
To prepare that all assembler tools are compiled and installed execute

make tools

in the patmos folder.
The assembler programs are located in subfolder asm. Take a look into basic.s and try to understand what this

small program does. Assemble the example with:

make asm BOOTAPP=basic

You should now find a basic.bin in the tmp folder. This file is just a plain binary file containing the instructions
for Patmos. You can display binary files with the Unix command od (e.g., with od -t x1 tmp/basic.bin). The
first 32-bit word in the binary file is the length of the function, that number that was defined in the assembler file
with .word 40;. The next word should be the first instruction. Look into the Patmos handbook and check if the
encoding of the first instruction is correct.

Now execute this ‘progam’ on the simulator pasim. As there is nothing written to stdout, the simulator will not
output much. Explore the options (with -h) to enable dumping of register contents. The simulator can also print
statistics of instruction usage and caches. The assembler and the software simulator can be executed with one step
with the help of the Makefile:

make swsim BOOTAPP=basic

The software simulator pasim is a C based simulator of the Patmos processor.
Patmos itself is written in Chisel a high level language for hardware design. Chisel is a language embedded in

Scala. Therefore, you have the full power of Scala available. The Chisel code can generate Verilog code for the
hardware synthesis and a C++ based emulator to simulate the hardware. The benefit of this Chisel based emulator
is that it is exactly the same function as the hardware.

The emulator (the Chisel based simulator) can execute the same program with following command:

make hwsim BOOTAPP=basic

This command assembles the application, executes the Chisel based hardware construction during which the
program is used to initialize the on-chip ROM, generates a C++ based emulator, compiles that emulator, and
executes it. The emulator shows the register content after each instruction.

Those two Patmos simulations, the software simulator and the Chisel based emulator, are used for a co-simulation
based test. In this co-simulation all available assembler programs are executed in both simulations and the register
out put is compared.

You can watch the hardware details by dumping the wave form during the execution of the emulator. To enable
waveform dumping you need to add the -v option for the call of the emulator in hardware/Makefile:

11

1 Introduction

test: emulator
$(HWBUILDDIR)/emulator -v -r -i -l 1000000 -O /dev/null; exit 0

Now rerun your example (with make hwsim) and change into the hardware folder. There you start the waveform
viewer with:

make view

To watch signals they need to be dropped into the wave window. For example the program counter (io_fedec_pc
from the fetch component) and some registers (rf_1 and rf_2 from the register file in component decode/rf).
You should be able to see the same register changes as before, but now with an exact timing, i.e., with the delay
between instruction fetch till register write in the last pipeline stage.

Optional: Tinker with the Patmos Hardware

You can find the hardware description of Patmos in hardware/src/patmos. Each of the 5 pipeline stages is in
its own Chisel class (and file). For example, change some instructions in the Execute stage by manipulating
Execute.scala. You could change the addition to a subtract operation and test it with the basic.s program, or
your own assembler test program.

Don’t forget to undo your changes for the next exercises. The Patmos repository is a git repository. Therefore,
undo is easily done with:

git checkout Execute.scala

1.4.3 I/O Programming

Hello World in Assembler

To communicate with the external world, Patmos contains a UART (or serial line) as a minimal I/O interface. In
the real hardware that UART is then connected to the PC for text output and for program download as well. In the
simulator the UART output is just echoed to stdout of the host.

The I/O devices are memory mapped, which means they can be accessed with load and store instructions.
However, Patmos has typed load and store instructions. Therefore, I/O devices are also mapped into a type. In our
case I/O devices are mapped into the local memory areas. Therefore, use swl as instruction, like:

swl [r7+0] = r9;

This above instruction writes the content of register r9 into a data location at address of register r7. Find the
address of the UART device in the handbook and write a single character (e.g., ‘*’) to it. The UART is described in
the Memory and I/O Subsystem chapter. You can find a short I/O example in asm/hello.s.

Optional: The Real Hello World

Transmission of characters takes some time and the processor needs to wait till the next character can be sent.
Waiting can be done with a busy loop polling the status register of the UART (the Transmit ready bit).

Embedded Hello World in C

Embedded systems are often built bare-bone, that means without an operating system and maybe even without a
standard library. In this example you shall write a the Hello World example without using printf. That means
you access the UART with load and store instructions, like you did in the assembler example. Remember, the I/O
devices are mapped into local memory space. The Patmos compiler needs to be informed that we do want to access
local memory. This is performed with the help of a little macro:

12

1.4 Getting Started with Patmos

#include <machine/spm.h>

int main() {

volatile _SPM int *uart_status = (volatile _SPM int *) 0xF0080000;
volatile _SPM int *uart_data = (volatile _SPM int *) 0xF0080004;

Emulator and elf File The emulator can read a standard ELF file. Therefore, we use the prebuilt emulator of
Patmos and compile only C programs. A barebone C program (e.g., myhello.c placed in folder c) for the emulator
(and the hardware) is compiled with:

make comp APP=myhello

We execute this .elf program with the emulator:

patemu tmp/myhello.elf

or with pasim.
Now start similar to the assembler based Hello World and write a short program to write a single character to the

UART.
As a next step write out a longer string of characters. However, transmission of characters takes some time and

the processor needs to wait till the next character can be sent. Waiting can be done with a busy loop polling the
status register of the UART (the Transmit ready bit).

1.4.4 Periodic Tasks

Real-time tasks are usually periodic tasks. Therefore, we will program a small example that uses the Patmos time
to execute periodic tasks. First we start with polling of the timer/counter to generate periodic event. Write out a
character about every second. For this polling use the timer counter and wait until some time elapsed. As we run in
a simulation, time elapses way slower. Therefore, start with short waiting times and increase with error and retry.

With this example you can explore the simulation time difference between the SW simulator pasim and the
hardware generated emulator. Which one is faster? And by how much?

Optional: Periodic Task as Interrupt Handler

Polling consumes computing resources and is only a solution for single tasks. Better is to use a time interrupt and
an interrupt handler for the periodic task. Reprogram the above example as a timer interrupt handler. You can find
an example for interrupt handlers in c/intrs.c.

Having the timer interrupt under control is almost half of a scheduler for a real-time operating system!

1.4.5 Adding an IO Device to Patmos

If you are curious on building hardware in Chisel you can add your own IO device to Patmos. As a simple first step
build an IO device that does not contain any connection to the external world, but act as an accelerator device for
Patmos. E.g., build an IO device that has two registers, which can be written by software, an adder (or multiplier)
that adds those two values, and a readable register that contains the result.

You can find instructions how to add an IO device to Patmos in Section 3.7.

1.4.6 Further Steps

After this exercise you master the T-CREST tool flow for the Patmos processor. Next step is to get an FPGA board,
such as the Altera DE2-115, and see the processor executing in real hardware. From this on you can proceed to
extend the processor with your own ideas, explore the multicore version of Patmos with the real-time network on
chip Argo, write your own operating systems, do WCET analysis with aiT and/or platin, ...

Contributions are always welcome and easy to do with a GitHub pull request. You can ask questions to the
Patmos community via the Patmos mailing list. See: http://patmos.compute.dtu.dk/.

13

http://patmos.compute.dtu.dk/

1 Introduction

14

2 The Architecture of Patmos

2.1 Pipeline

Figure 2.1 shows an overview of Patmos’ pipeline. The pipeline consist of 5 stages: (1) instruction fetch (FE), (2)
decode and register read (DEC), (3) execute (EX), (4) memory access (MEM), and (5) register write back (WB).

Some instructions define additional pipeline stages. Multiplication instructions are executed, starting from the
EX stage, in a parallel pipeline with fixed-length (see the instruction definition). The respective stages are referred
to by EX1, . . . , EXn.

2.1.1 Fetch

Fetch one or two words of instruction from the ROM or instruction cache. Calculate next PC depending on the
length of the instruction bundle.

2.1.2 Decode

Decode the instruction and generate control signals for the following stages. Read register operands. Sign or zero
extend immediate operands.

2.1.3 Execute

Read predicate registers. Conditional execute (ALU) instructions. Write predicate register. Calculate effective
address for memory operations.

2.1.4 Memory

Read or write memory. This is the only pipeline stage that might stall the pipeline.

2.1.5 Write Back

Write result into destination register.

2.2 Local Memories

Patmos contains several on-chip memories, as sketched in Figure 2.1. We apply the idea of split caches [12] to
simplify and enhance the cache analysis. Instructions are fetched from the instruction cache. Patmos also supports
instruction and data scratchpad memories. Stack allocated data is cached in a stack cache the other data in the data
cache with LRU replacement. Accesses to data that are hard to analyze can bypass the data cache.

2.3 Register Files

The register files available in Patmos are depicted by Figure 2.2. In short, Patmos offers:

• 32, 32-bit general-purpose registers (R) : r0, . . . , r31
r0 is read-only, set to zero (0).

15

2 The Architecture of Patmos

 RF M$

IRPC

+

Dec

 S$

SP

 D$

 RF

+

Figure 2.1: Pipeline of Patmos with fetch, decode, execute, memory, and write back stages.

• 8, single-bit predicate registers (P): p0, . . . , p7,
p0 is read-only, set to true (1).

• 16, 32-bit special-purpose registers (S): s0, . . . , s15

The general-purpose registers R are read in the DEC stage and written in the WB stage. Full forwarding makes
them available in the EX stage before written into the register file. The predicate registers are single bits that are set
and read in the EX stage. The special registers S is just a collection of various “special” processor registers (e.g.,
stack cache pointers). These registers might be used by different units/stages in the pipeline and are not physically
collected in a “register file”. The pipeline stage where those registers are read and written by the mfs and mts
are dependent on the type of the special register. So all-in-all the recoverable process state is: general-purpose
registers R, the predicates P, and a collection of various processor registers mapped to the “special” register file S.

Concurrently writing and reading the same register in the same cycle will, for the read, yield the new value
of the register (the register file provides internal forwarding). Reads in subsequent cycles return the result most
recently written to the register, i.e., the pipeline implements full forwarding.

When writing concurrently to the same register, the result is undefined. If two instructions of the current bundle
have the same destination register, the result is only defined if the predicate of at most one instruction in the bundle
evaluates to true (1).

The predicate registers are usually encoded as 4-bit operands, where the most significant bit indicates that the
value read from the register file should be inverted before it is used. For operands that are written, this additional
bit is omitted.

The special-purpose registers of S allow access to some dedicated registers:

• The lower 8 bits of s0 can be used to save/restore all predicate registers at once. The other bits of that
register are currently reserved, but not used. Setting the reserved bits has no effect.

• s2 and s3 can also be accessed through the names sl and sh and represent the lower and upper 32-bits a
multiplication.

• s5 can also be accessed through the name ss and represents the register pointing to the top of the saved
stack content in the main memory (i.e., the current stack spill pointer). Updating s5 does not change s6 or
spill the stack cache.

• s6 can also be accessed through the name st and represents a pointer to the top-most element of the content
of the stack cache. Updating s6 does not change s5 or spill the stack cache.

16

2.3 Register Files

012345678910111213141516171819202122232425262728293031

r0 (zero, read-only)

r1 (result, scratch)

r2 (result 64-bit, scratch)

r3 (argument 1, scratch)

r4 (argument 2, scratch)

r5 (argument 3, scratch)

r6 (argument 4, scratch)

r7 (argument 5, scratch)

r8 (argument 6, scratch)

r9 (scratch)

r10 (scratch)

r11 (scratch)

r12 (scratch)

r13 (scratch)

r14 (scratch)

r15 (scratch)

r16 (scratch)

r17 (scratch)

r18 (scratch)

r19 (scratch)

r20 (scratch)

r21 (saved)

r22 (saved)

r23 (saved)

r24 (saved)

r25 (saved)

r26 (saved)

r27 (saved)

r28 (saved)

r29 (temp. register, saved)

r30 (frame pointer, saved)

r31 (stack pointer, saved)

(a) General-Purpose Registers (R)

p7 p6 p5 p4 p3 p2 p1 p0
– Rea

d on
ly,

alw
ay

s 1

01234567

(b) Predicate Registers (P)

012345678910111213141516171819202122232425262728293031

reserved p7 . . . p0 s0

s1

sl (mul low) s2

sh (mul high) s3

s4

ss (spill pointer) s5

st (stack pointer) s6

srb (return base) s7

sro (return offset) s8

sxb (exception return base) s9

sxo (exception return offset) s10

s11

s12

s13

s14

s15

(c) Special-Purpose Registers (S)

Figure 2.2: General-purpose register file, predicate registers, and special-purpose registers of Patmos.

17

2 The Architecture of Patmos

2.4 Bundle Formats

All Patmos instructions are 32 bits wide and are structured according to one of the instruction formats defined in
the following section. Up to two instructions can be combined to form an instruction bundle; Patmos bundles are
thus either 32 or 64 bits wide. The bundles sizes are recognized by the value of the most significant bit, where 0
indicates a short, 32-bit bundle and 1 a long, 64-bit bundle.

The following figures illustrate these two bundle variants:

• 32-bit bundle format
012345678910111213141516171819202122232425262728293031

0

• 64-bit bundle format
3233343536373839404142434445464748495051525354555657585960616263

1

012345678910111213141516171819202122232425262728293031

x

2.5 Instruction Formats

This section gives an overview of all instruction formats defined in the Patmos ISA. Individual instructions of
the various formats are defined in the next section. Gray fields indicate bits whose function is determined by a
sub-class of the instruction format. Black fields are not used.

• AluImm – Arithmetic Immediate (ALUi)
012345678910111213141516171819202122232425262728293031

x Pred 00 Func Rd Rs1 Immediate

• AluLongImm – Long Immediate (ALUl)
012345678910111213141516171819202122232425262728293031

1 Pred 11111 Rd Rs1 000 Func
012345678910111213141516171819202122232425262728293031

Long Immediate

• Alu – Arithmetic (ALU)
012345678910111213141516171819202122232425262728293031

x Pred 01000 Opc Func

18

2.5 Instruction Formats

012345678910111213141516171819202122232425262728293031

x Pred 01000 Rd Rs1 Rs2 000 Func
AluReg – Register
(ALUr)

012345678910111213141516171819202122232425262728293031

x Pred 01000 Rs1 Rs2 010 FuncALUm – Multiply

012345678910111213141516171819202122232425262728293031

x Pred 01000 Pd Rs1 Rs2 011 FuncALUc – Compare

012345678910111213141516171819202122232425262728293031

x Pred 01000 Pd Ps1 Ps2 100 FuncALUp – Predicate

012345678910111213141516171819202122232425262728293031

x Pred 01000 Rd Rs1 Imm 101 PsALUb – Bitcopy

012345678910111213141516171819202122232425262728293031

x Pred 01000 Pd Rs1 Imm 110 Func
ALUci – Compare
immediate

• SPC – Special
012345678910111213141516171819202122232425262728293031

x Pred 01001 Opc I/R/F

012345678910111213141516171819202122232425262728293031

x Pred 01001 Rs1 010 SdSPCt – Move To Special

012345678910111213141516171819202122232425262728293031

x Pred 01001 Rd 011 SsSPCf – Move From Special

• LDT – Load Typed
012345678910111213141516171819202122232425262728293031

x Pred 01010 Rd Ra Type Offset

• STT – Store Typed
012345678910111213141516171819202122232425262728293031

x Pred 01011 Type Ra Rs Offset

• STC – Stack Control
012345678910111213141516171819202122232425262728293031

x Pred 01100 Op F

012345678910111213141516171819202122232425262728293031

x Pred 01100 Op 00 ImmediateSTCi – Stack Control Immediate
012345678910111213141516171819202122232425262728293031

x Pred 01100 Op 01 RsSTCr – Stack Control Register

• CFLi – Control Flow with Immediate
012345678910111213141516171819202122232425262728293031

x Pred 10 Opd Immediate

• CFLr – Control Flow with Registers

19

2 The Architecture of Patmos

012345678910111213141516171819202122232425262728293031

x Pred 1100 d F Op

012345678910111213141516171819202122232425262728293031

x Pred 1100 d 00 OpCFLri – Control Flow with implicit registers

012345678910111213141516171819202122232425262728293031

x Pred 1100 d Rs 01 OpCFLrs – Control Flow with single register

012345678910111213141516171819202122232425262728293031

x Pred 1100 d Rs1 Rs2 10 OpCFLrt – Control Flow with two registers

20

2.6 Instruction Opcodes

2.6 Instruction Opcodes

This section defines the instruction set architecture, the instruction opcodes, and the behavior of the respective
instructions of Patmos.

2.6.1 Binary Arithmetic

Applies to the AluReg, AluImm, and AluLongImm formats. Operand Op2 denotes either the Rs2, or the Immediate
operand, or the Long Immediate. The immediate operand is zero-extended. For shift and rotate operations, only
the lower 5 bits of the operand are considered. Table 2.1 shows the encoding of the func field; for AluImm
instructions, only functions in the upper half of that table are available.

• AluReg – Register (ALUr)
012345678910111213141516171819202122232425262728293031

x Pred 01000 Rd Rs1 Rs2 000 Func

• AluImm – Arithmetic Immediate (ALUi)
012345678910111213141516171819202122232425262728293031

x Pred 00 Func Rd Rs1 Immediate

• AluLongImm – Long Immediate (ALUl)
012345678910111213141516171819202122232425262728293031

1 Pred 11111 Rd Rs1 000 Func
012345678910111213141516171819202122232425262728293031

Long Immediate

Func Name Semantics

0000 add Rd = Rs1 + Op2
0001 sub Rd = Rs1 - Op2
0010 xor Rd = Rs1 ^ Op2
0011 sl Rd = Rs1 << Op2(4:0)
0100 sr Rd = Rs1 >>> Op2(4:0)
0101 sra Rd = Rs1 >> Op2(4:0)
0110 or Rd = Rs1 | Op2
0111 and Rd = Rs1 & Op2

1000 — unused
1001 — unused
1010 — unused
1011 nor Rd = ~(Rs1 | Op2)
1100 shadd Rd = (Rs1 << 1) + Op2
1101 shadd2 Rd = (Rs1 << 2) + Op2
1110 — unused
1111 — unused

Table 2.1: General ALU functions

21

2 The Architecture of Patmos

Pseudo Instructions

• mov Rd = Rs . . . add Rd = Rs + 0

• clr Rd . . . add Rd = r0 + 0

• neg Rd = -Rs . . . sub Rd = 0 - Rs

• not Rd = ~Rs . . . nor Rd = ~(Rs | R0)

• li Rd = Immediate . . . add Rd = r0 + Immediate

• li Rd = Immediate . . . sub Rd = r0 - Immediate

• nop . . . sub r0 = r0 - 0

Note The use of sub r0 = r0 - 0 to encode a nop pseudo-instruction results in a value of 0x00400000 in the
binary instruction stream. This helps in distinguishing the execution of compiler-generated nops from executing
instructions from memory that happens to be zero.

22

2.6 Instruction Opcodes

2.6.2 Multiply

Applies to the ALUm format only. Multiplications are executed in parallel with the regular pipeline and finish
within a fixed number of cycles TODO: how many?. Table 2.2 shows the encoding of the func field for the ALUm
instruction format.

• ALUm – Multiply
012345678910111213141516171819202122232425262728293031

x Pred 01000 Rs1 Rs2 010 Func

Func Name Semantics

0000 mul sl = Rs1 * Rs2;
sh = (Rs1 * Rs2) >>> 32

0001 mulu sl = (uint32_t)Rs1 * (uint32_t)Rs2;
sh = ((uint32_t)Rs1 * (uint32_t)Rs2) >>> 32

0010 — unused
.
1111 — unused

Table 2.2: Multiplication functions

Behavior Perform multiplication in multiple cycles and write the result into destination registers sl and sh.

Note Multiplications are pipelined, it is thus possible to issue one multiplication on every clock cycle. Multipli-
cations can only be issued in the first slot.

23

2 The Architecture of Patmos

2.6.3 Compare

Applies to the ALUc and ALUci formats only. Operand Op2 denotes either the Rs2, or the Imm operand. Tables 2.3
show the encoding of the func field for the ALUc and ALUci formats.

• ALUc – Compare
012345678910111213141516171819202122232425262728293031

x Pred 01000 Pd Rs1 Rs2 011 Func

• ALUci – Compare immediate
012345678910111213141516171819202122232425262728293031

x Pred 01000 Pd Rs1 Imm 110 Func

Func Name Semantics

0000 cmpeq Pd = Rs1 == Op2
0001 cmpneq Pd = Rs1 != Op2
0010 cmplt Pd = Rs1 < Op2
0011 cmple Pd = Rs1 <= Op2
0100 cmpult Pd = Rs1 < Op2, unsigned
0101 cmpule Pd = Rs1 <= Op2, unsigned
0110 btest Pd = (Rs1 & (1 << Op2)) != 0
0111 — unused
.
1111 — unused

Table 2.3: Compare functions

Pseudo Instructions

• isodd Pd = Rs1 . . . btest Pd = Rs1[r0]

• mov Pd = Rs . . . cmpneq Pd = Rs != r0

Note The predicate register is read and written in the execute stage.

24

2.6 Instruction Opcodes

2.6.4 Predicate

Applies to the ALUp format only, the opcodes correspond to those of the ALU operations on general purpose
registers. Table 2.4 shows the encoding of the func field for the ALUp format.

• ALUp – Predicate
012345678910111213141516171819202122232425262728293031

x Pred 01000 Pd Ps1 Ps2 100 Func

Func Name Semantics

0000 — unused
.
0101 — unused
0110 por Pd = Ps1 | Ps2
0111 pand Pd = Ps1 & Ps2
1000 — unused
1001 — unused
1010 pxor Pd = Ps1 ^ Ps2
1011 — unused
.
1111 — unused

Table 2.4: Predicate functions

Pseudo Instructions

• pmov Pd = Ps . . . por Pd = Ps | Ps

• pnot Pd = ~Ps . . . pxor Pd = (Ps ^ p0)

• pset Pd = 1 . . . por Pd = p0 | p0

• pclr Pd = 0 . . . pxor Pd = p0 ^ p0

Note The predicate register is read and written in the execute stage. All predicate combine instruction mnemonics
(including pseudo instructions) are prefixed with p, all other instructions involving predicates are not prefixed (e.g.,
moving from register to predicate).

25

2 The Architecture of Patmos

2.6.5 Bitcopy

Applies to the ALUb format only. The only instruction with this encoding is bcopy, which is the “inverse” of the
btest instruction. It has the following semantics: Rd = (Rs1 & ~(1 << Imm)) | (Ps << Imm)
Note that operand Ps, like the source operands in the ALUp format, can be inverted.

• ALUb – Bitcopy
012345678910111213141516171819202122232425262728293031

x Pred 01000 Rd Rs1 Imm 101 Ps

Pseudo Instructions

• mov Rd = Ps . . . bcopy Rd = r0, 0, Ps

Note The predicate register is read in the execute stage.

26

2.6 Instruction Opcodes

2.6.6 Move To Special

Applies to the SPCt format only. Copy the value of a general-purpose register to a special-purpose register. The
only instruction is mts, which stores the content of general-purpose register Rs1 in special register Sd.

• SPCt – Move To Special
012345678910111213141516171819202122232425262728293031

x Pred 01001 Rs1 010 Sd

Note

27

2 The Architecture of Patmos

2.6.7 Move From Special

Applies to the SPCf format only. Copy the value of a special-purpose register to a general-purpose register. The
only instruction is mfs, which loads the content of special register Ss to general-purpose register Rd.

• SPCf – Move From Special
012345678910111213141516171819202122232425262728293031

x Pred 01001 Rd 011 Ss

28

2.6 Instruction Opcodes

2.6.8 Load Typed

Applies to the LDT format only. Load from a memory or cache. In the table accesses to the stack cache are denoted
by sc, to the local scratchpad memory by lm, to the data cache by dc, and to the global shared memory by gm. All
load variants are considered to stall until the memory access is completed.

Loads incur a load-to-use latency that has to be respected by the compiler/programmer. The result of the load is
not available in the bundle immediately after the load, i.e., there must be one bundle between the load instruction
and the first use of the destination register. The value of the destination register is undefined during this load delay
slot.

The displacement value (Imm) value is interpreted unsigned.

• LDT – Load Typed
012345678910111213141516171819202122232425262728293031

x Pred 01010 Rd Ra Type Immediate

Type Name Semantics

000 | 00 lws Rd=sc[Ra+(Imm << 2)]32
000 | 01 lwl Rd=lm[Ra+(Imm << 2)]32
000 | 10 lwc Rd=dc[Ra+(Imm << 2)]32
000 | 11 lwm Rd=gm[Ra+(Imm << 2)]32
001 | 00 lhs Rd=(int32_t)sc[Ra+(Imm << 1)]16
001 | 01 lhl Rd=(int32_t)lm[Ra+(Imm << 1)]16
001 | 10 lhc Rd=(int32_t)dc[Ra+(Imm << 1)]16
001 | 11 lhm Rd=(int32_t)gm[Ra+(Imm << 1)]16
010 | 00 lbs Rd=(int32_t)sc[Ra+Imm]8
010 | 01 lbl Rd=(int32_t)lm[Ra+Imm]8
010 | 10 lbc Rd=(int32_t)dc[Ra+Imm]8
010 | 11 lbm Rd=(int32_t)gm[Ra+Imm]8
011 | 00 lhus Rd=(uint32_t)sc[Ra+(Imm << 1)]16
011 | 01 lhul Rd=(uint32_t)lm[Ra+(Imm << 1)]16
011 | 10 lhuc Rd=(uint32_t)dc[Ra+(Imm << 1)]16
011 | 11 lhum Rd=(uint32_t)gm[Ra+(Imm << 1)]16
100 | 00 lbus Rd=(uint32_t)sc[Ra+Imm]8
100 | 01 lbul Rd=(uint32_t)lm[Ra+Imm]8
100 | 10 lbuc Rd=(uint32_t)dc[Ra+Imm]8
100 | 11 lbum Rd=(uint32_t)gm[Ra+Imm]8

101 | 00 — unused
.
111 | 11 — unused

Table 2.5: Typed loads

Note All loads can only be issued on the first slot.

29

2 The Architecture of Patmos

2.6.9 Store Typed

Applies to the STT format only. Store to a memory or cache. In the table accesses to the stack cache are denoted
by sc, to the local scratchpad memory by lm, to the data cache by dc, and to the global shared memory by gm.

The displacement value (Imm) value is interpreted unsigned. Stores can only be issued on the first slot.

• STT – Store Typed
012345678910111213141516171819202122232425262728293031

x Pred 01011 Type Ra Rs Offset

Type Name Semantics

000 | 00 sws sc[Ra+(Imm << 2)]32 = Rs
000 | 01 swl lm[Ra+(Imm << 2)]32 = Rs
000 | 10 swc dc[Ra+(Imm << 2)]32 = Rs
000 | 11 swm gm[Ra+(Imm << 2)]32 = Rs
001 | 00 shs sc[Ra+(Imm << 1)]16 = Rs[15:0]
001 | 01 shl lm[Ra+(Imm << 1)]16 = Rs[15:0]
001 | 10 shc dc[Ra+(Imm << 1)]16 = Rs[15:0]
001 | 11 shm gm[Ra+(Imm << 1)]16 = Rs[15:0]
010 | 00 sbs sc[Ra+Imm]8 = Rs[7:0]
010 | 01 sbl lm[Ra+Imm]8 = Rs[7:0]
010 | 10 sbc dc[Ra+Imm]8 = Rs[7:0]
010 | 11 sbm gm[Ra+Imm]8 = Rs[7:0]
01100 — unused
.
11111 — unused

Table 2.6: Typed stores

Note - Global Memory / Data Cache With regard the data cache, stores are performed using a write-through
strategy without write-allocation. Data that is not available in the cache will not be loaded by stores; but will be
updated if it is available in the cache.

Consistency between loads and other stores is assumed to be guaranteed by the memory interface, i.e., memory
accesses are handled in-order with respect to a specific processor. This has implications on the bus, the network-
on-chip, and the global memory.

30

2.6 Instruction Opcodes

2.6.10 Stack Control

Applies to the STC format only. Manipulate the stack frame in the stack cache. sres reserves space on the stack,
potentially spilling other stack frames to main memory. sens ensures that a stack frame is entirely loaded to the
stack cache, or otherwise refills the stack cache as needed. sfree frees space on the stack frame (without any other
side effect, i.e., no spill/fill is executed). sspill writes the tail of the stack cache to main memory and updates the
spill pointer.

All immediate stack control operations are carried out assuming word size, i.e., the immediate operand is
multiplied by four. All register operands and stack pointer addresses in special registers are in units of bytes.

A more detailed description of the stack cache is given in Section 3.3. Table 2.7 shows the encoding of operations
for STCi, while Table 2.8 shows the encoding for STCr.

• STCi – Stack Control Immediate
012345678910111213141516171819202122232425262728293031

x Pred 01100 Op 00 Immediate

Op Name Semantics

00 sres Reserve space on the stack (with spill)
01 sens Ensure stack space (with refill)
10 sfree Free stack space.
11 sspill Spill tail of the stack cache to memory

Table 2.7: Stack control operations with immediates

• STCr – Stack Control Register
012345678910111213141516171819202122232425262728293031

x Pred 01100 Op 01 Rs

Op Name Semantics

00 — unused
01 sens Ensure stack space (with refill)
10 — unused
11 sspill Spill tail of the stack cache to memory

Table 2.8: Stack control operations for registers

Behavior sres: Check free space left in the stack cache. Update stack-cache registers. If needed, spill to global
memory using ss.
sense: Check reserved space available in the stack cache. If needed, refill from global memory using ss.
sfree: Account for head−tail< 0, update ss and st. Update stack-cache register head.
sspill: Update ss and st. Update stack-cache register tail. Spill to global memory using ss.

Note Stack control instructions can only be issued on the first position within a bundle.
It is permissible to use several reserve, ensure, and free operations within the same function.

31

2 The Architecture of Patmos

2.6.11 Control-Flow Instructions

Applies to CFLi and CFLr format only. Transfer control to another function or perform function-local branches.
br performs a function-local branch. call performs a function call, storing the return information (i.e., where to
resume execution when returning) in srb/sro. brcf (“branch with cache fill”) performs a global branch. With
regard to addressing modes and caching, brcf behaves like a call, but it does not store any return information.
trap performs a system call (see Section 2.7). ret returns from a function, using the return information in srb/sro.
xret is similar to ret but uses the return information in sxb/sxo, which are set by interrupts, exceptions, and traps.

With a method cache, call, brfc, trap, ret, and xret may cause a cache miss and a subsequent cache refill to
load the target code; they expect the size of the code block fetched to the cache in number of bytes at <base>-4.
br is assumed to be a cache hit.

Immediate call and branch instructions interpret the operand as unsigned for call and brcf, and as signed for
PC-relative branches (br). These immediate values are interpreted in word size. The target address of PC-relative
branches is computed relative to the address of the branch instruction. The immediate value for trap is an index
into an exception vector (see Section 2.7).

Indirect call and branch instructions interpret the operand as unsigned absolute addresses in byte size. Indirect
brcf takes two operands: a base address and an offset. The base address is the address of the code block to be
fetched; the effective branch target is <base>+<offset>.

The return information provided by call in srb/sro should only be passed to ret. Likewise, the exception
return information in sxb/sxo should only be passed to xret. The unit and addressing mode of these values is
implementation dependent.

All control-flow instructions (except trap) have a delayed and a non-delayed variant. For the delayed variant, N
bundles following the control-flow instruction in the code are always executed. For the non-delayed variants, the
control-flow change appears to happen immediately. However, non-delayed control-flow instructions may require
more than one cycle to be executed. The precise timing behavior is specified along with the detailed description of
the respective instructions.

The mnemonic of an instruction’s non-delayed instruction variant is suffixed with nd. For clarity, this document
uses the unsuffixed name to mean both variants when describing the general properties of the respective instruction.
br instructions are executed in the EX stage, while the other control-flow instructions are executed in the MEM

stage. This corresponds to a branch delay of 2 bundles for br and 3 bundles for other control-flow instructions.
In case there no other instructions available, NOP instructions can be used to fill the delay slots. There are no
restrictions with regard to the size or type of instructions in the delay slot. The only exception is that executing
control-flow instructions in a delay slot may lead to unspecified behavior. Interrupts occurring during the delay slot
are delayed until the branch has executed.

Instruction Immediate Indirect Cache fill Link Delay Slots

call absolute, words absolute, bytes yes yes 3
br PC relative, words absolute, bytes no no 2
brcf absolute, words absolute+offset, bytes yes no 3
trap exception vector index — yes no –

ret — implementation dependent yes no 3
xret — implementation dependent yes no 3

Table 2.9: Addressing modes of control-flow instructions

32

2.6 Instruction Opcodes

• CFLi – Control Flow with Immediate
012345678910111213141516171819202122232425262728293031

x Pred 10 Opd Immediate

Op d Name Semantics

00 0 callnd function call (absolute, with cache fill, non-delayed)
00 1 call delayed function call (absolute, with cache fill, delayed)
01 0 brnd local branch (PC-relative, always hit, non-delayed)
01 1 br local branch (PC-relative, always hit, delayed)
10 0 brcfnd branch (absolute, with cache fill, non-delayed)
10 1 brcf branch (absolute, with cache fill, delayed)
11 0 trap system call (via exception vector, with cache fill, non-delayed)

Table 2.10: Control-flow operations with immediate

• CFLri – Control Flow with implicit registers
012345678910111213141516171819202122232425262728293031

x Pred 1100 d 00 Op

Op d Name Semantics

00 0 retnd return (with cache fill, non-delayed)
00 1 ret return (with cache fill, delayed)
01 0 xretnd return from exception (with cache fill, non-delayed)
01 1 xret return from exception (with cache fill, delayed)

Table 2.11: Control-flow operations with implicit register operands

• CFLrs – Control Flow with single registers
012345678910111213141516171819202122232425262728293031

x Pred 1100 d Rs 01 Op

Op d Name Semantics

00 0 callnd function call (indirect, with cache fill, non-delayed)
00 1 call function call (indirect, with cache fill, delayed)
01 0 brnd local branch (indirect, always hit, non-delayed)
01 1 br local branch (indirect, always hit, delayed)

Table 2.12: Control-flow operations with single register operand

• CFLrt – Control Flow with two registers
012345678910111213141516171819202122232425262728293031

x Pred 1100 d Rs1 Rs2 10 Op

33

2 The Architecture of Patmos

Op d Name Semantics

10 0 brcfnd branch (indirect with offset, with cache fill, non-delayed)
10 1 brcf branch (indirect with offset, with cache fill, delayed)

Table 2.13: Control-flow operations with two register operands

Behavior – call Perform a function call, filling the method cache if needed.
Listing 2.1 shows the pseudo-code for a call. The parameter addr is either an immediate value (for calls in the

CFLi format), or comes from a general-purpose register (for indirect calls). The variables $srb and $sro denote
the special registers srb and sro, respectively.

First, it stores the return information, and remembers the new base address in an internal variable. Then, it
retrieves the offset into the cache for the function to be called and if necessary copies the instructions into the
cache. Finally, it updates the internal program counter and continues execution from there.

Listing 2.1: Call
call(addr) {
// Store return information
$srb = base;
$sro = PC;
// Remember base address
base = addr;
// Cache look-up and load
coff = offset(addr);
if (!hit(addr)) memcpy(cache[coff], mem[base], mem[base-4]);
// Update PC
PC = coff;

}

The timing of a callnd instruction that is executed is equivalent to the timing of an istruction sequence call;
nop; nop; nop. The timing of a callnd instruction with a predicate that evaluates to false is equivalent to a
single nop instruction.

Behavior – brcf Perform a branch, filling the method cache if needed.
The pseudo-code for a PC-relative brcf is shown in Listing 2.2. It is similar to the call, but does not store any

return information. Additionally, an offset off may be specified for a brcf in the CFLrt format; this offset is 0 for
brcf in the CFLi format.

Listing 2.2: Branch with cache fill
call(addr, off) {
// Remember base address
base = addr;
// Cache look-up and load
coff = offset(addr);
if (!hit(addr)) memcpy(cache[coff], mem[base], mem[base-4]);
// Update PC
PC = coff+off;

}

34

2.6 Instruction Opcodes

The timing of a brcfnd instruction that is executed is equivalent to the timing of an istruction sequence brcf;
nop; nop; nop. The timing of a brcfnd instruction with a predicate that evaluates to false is equivalent to a
single nop instruction.

Behavior – trap Perform a system call. Details are described in Section 2.7. Like the call, trap stores return
information, but it uses special registers sxb and sxo for that purpose.

Behavior – ret, xret Return from function call. The ret instruction uses the return information in the special
registers srb/sro to compute its target address. The xret instruction uses the registers sxb/sxo.

Listing 2.3 shows the pseudo-code for ret. It first retrieves the return base and does the appropriate cache
handling. It then adds the cache offset and the return offset and assigns the sum to the internal program counter,
from which execution continues.

Listing 2.3: Return
ret() {
// Retrieve return base
base = $srb;
// Cache look-up and load
coff = offset($srb);
if (!hit($srb)) memcpy(cache[coff], mem[base], mem[base-4]);
// Update PC
PC = coff+$sro;

}

The timing of a retnd/xretnd instruction that is executed is equivalent to the timing of an istruction sequence
ret; nop; nop; nop. The timing of a retnd/xretnd instruction with a predicate that evaluates to false is
equivalent to a single nop instruction.

Behavior – br Local branch, compute new program counter value and update program counter.
The timing of a brnd instruction may be implementation defined. Implementations are allowed to use branch

prediction for brnd instructions, if the underlying mechanism is documented in detail. Unless specified and
documented otherwise, the timing of brnd must be according to “predict-not-taken”. The timing of a brnd
instruction that is executed is then equivalent to the timing of the sequence br; nop; nop, while the timing with a
false predicate is equivalent to a single nop.

Note All control-flow instructions can only be issued on the first position within a bundle.

35

2 The Architecture of Patmos

2.6.12 Instruction List

TODO: List all Patmos instructions with a usage example
Following table lists all Patmos instructions with an example usage

Instruction Semantics

addi r1 = r0, 255 Add 255 to register r1

Table 2.14: Patmos instructions with examples

Can be found in instructions.txt:
add sub xor sl sr sra or and nor shadd shadd2 addi subi xori sli sri srai ori andi nori shaddi shadd2i mul mulu

cmpeq cmpneq cmplt cmple cmpult cmule btest por pand pxor bcopy mts mfs lws lwl lwc lwm lhs lhl lhc lhm lbs
lbl lbc lbm lhus lhul lhuc lhum lbus lbul lbuc lbum sws swl swc swm shs shl shc shm sbs sbl sbc sbm sres sens
sfree sspill call br brcf trap ret xret callnd brnd brcfnd retnd xretnd

36

2.7 Exceptions: Interrupts, Faults and Traps

2.7 Exceptions: Interrupts, Faults and Traps

In the following, we use exception to denote any kind of “abnormal” transfer of control. Interrupts are generated
outside of the pipeline by I/O devices. Faults are triggered by the pipeline for instructions that cannot be executed as
expected (accesses to unmapped memory, undecodable instructions, etc.). Traps are willfully generated exceptions,
and are used to invoke operating system functions.

An exception unit that is mapped to the I/O space (see Chapter 3) is responsible for managing exceptions. It
includes the device registers shown in Table 2.15. The device registers of the exception unit are writable only
when the processor is in privileged mode. The general principle of operation is that the exception unit requests the
execution of an exception from the pipeline, and the pipeline returns an acknowledges when it starts the execution
of the respective exception handler.

The status register is 32 bits wide; bit 0 of that register determines whether interrupts are enabled. They are
enabled if it is one, and they are disabled when it is zero. Bit 1 of the status register indicates if the processor is
in privileged mode (when the bit is one) or in user mode (when the bit is zero). The status register is shifted left
by two bits when an exception handler is triggered, and shifted right by two bits when returning from an exception
handler via xret. Triggering an exception handler enables privileged mode and disables interrupts, such that the
lowest to bits of the status register are 10 at the beginning of an exception handler. Privileged mode is also
enabled after reset. Overflows of the status register (which might be caused by nested exception handlers) are
silently ignored.

Internally generated exceptions, i.e., faults and traps, always take precedence over interrupts. If more than one
internal exception or interrupt is pending at the same time, the exception with the lower number takes precedence.

2.7.1 Exception Vector

The exception unit supports 32 exception vector entries, shown in the lower half of Table 2.15. Exceptions 0 and 1
are reserved for the “illegal operation” and “illegal memory access” faults. While exceptions 2 to 15 can be used
freely (e.g., by the operating system), exceptions 16 to 32 are attached to interrupts.

2.7.2 Traps

The instruction trap <n> triggers exception number n. In order to assimilate the handling of faults and traps in
the pipeline, trap instructions never have a delay slot. Traps can in principle be called for any exception, e.g., to
trigger an interrupt handler from software.

2.7.3 Return Information

The return information for exceptions must be stored in registers that are never used otherwise. Two special
registers sxb (s9) and sxo (s10) provide the return base and return offset for exceptions. The instruction xret
implicitly uses these registers, as opposed to the ret instruction, which uses special registers srb and sro.

2.7.4 Resuming Execution

The return information for interrupts is set such that xret returns to the bundle that was replaced by the interrupt
instruction in the pipeline.

For faults, the return information points to the bundle that triggered the fault. After a fault, resuming execution
must either have fixed the cause of the fault and reexecute the whole bundle again, or emulate the effects of the
whole bundle (including the triggering of further faults) and continue execution after the bundle. Due to the
complexity of the second option, we consider faults where the respective instruction cannot be reexecuted fatal,
and advise developers to terminate execution instead of trying to resume.

Resuming after a trap in principle has to take into account the same considerations as faults. However, the
content of the bundle is under the control of the compiler. We require that a trap instruction is the only instruction
in a bundle. The return address for traps points to the bundle after the one that contains the trap instruction.

37

2 The Architecture of Patmos

Listing 2.4: Exception handler registration
for (unsigned i = 0; i < 32; i++) {

exc_register(i, &fault_handler);
}
exc_register(8, &trap_handler);
exc_register(16, &intr_handler);
exc_register(17, &intr_handler);
exc_register(18, &intr_handler);
exc_register(19, &intr_handler);

2.7.5 Delayed Triggering of Interrupts

Instructions that stall the pipeline (loads, stores, calls, etc.) delay the triggering of interrupts until the pipeline
resumes execution. Therefore, method cache fills or stack spills cannot be interrupted. Control-flow instructions
delay the triggering of interrupts such that interrupts are never triggered inside a delay slot or while executing
instructions speculatively. Multiplications delay the triggering of interrupts such that no multiplications are “in
flight” when an interrupt handler is entered. Outstanding delayed loads do not delay the triggering of interrupts.
Interrupt handlers must ensure that the contents of the special register sm are saved and restored correctly.

2.7.6 Sleep Mode

The exception unit provides support for putting the processor to sleep. Writes to the sleep register halt the pipeline
until an interrupt (or other exception) occurs. After executing the respective exception handler, execution resumes
after that write. Therefore, writes to the sleep register should be enclosed in a loop for continuous sleeping.

Support for sleeping is optional. On implementations that do not support sleeping, writes to the sleep register
are ignored and do not have any effect. Therefore, continuing execution after a write to the sleep register is not
proof that an interrupt has occurred.

2.7.7 Cache Control

The cachectrl register provides an interface for cache control. Writing a value with bit 0 set invalidates the
contents of the data cache. Writing a value with bit 1 set invalidates the contents of the instruction cache.

Local Mode

Writing a value with bit 31 set to the cachectrl register changes between the normal mode of operation and a
special local mode. In the local mode, cached memory accesses (lwc, swc, . . .), are redirected to the local address
space instead of the data cache. The local mode is used during booting and is not intended for use in normal
applications.

2.7.8 Examples

The API for exception and interrupt handling for Patmos is provided by the include file machine/exceptions.h.
Listing 2.4 shows how to register exception handlers for specific exceptions. First, fault_handler is registered

as handler for all exceptions. Then, trap_handler is registered for exception number eight, and intr_handler
for exceptions 16 to 19, i.e., for interrupts 0 to 3.

Listing 2.5 shows how to enable interrupts at the start of an application. First, all interrupts are unmasked. Then,
all pending flags are cleared to avoid triggering any “stale” interrupts. Finally, interrupts are enabled; after that
point, Patmos will call the respective interrupt handler when an interrupt occurs.

To unmask only certain interrupts, machine/exceptions.h provides a function intr_unmask, which takes an
interrupt number as parameter. Similarly, intr_clear_pending can be used to clear only a particular pending

38

2.7 Exceptions: Interrupts, Faults and Traps

Listing 2.5: Interrupt enabling
// unmask interrupts
intr_unmask_all();
// clear pending flags
intr_clear_all_pending();
// enable interrupts
intr_enable();

Listing 2.6: Fault handler example
void fault_handler(void) {
unsigned source = exc_get_source();
LEDS = source;

const char *msg = "FAULT";
switch(source) {
case 0: msg = "Illegal operation"; break;
case 1: msg = "Illegal memory access"; break;
}
puts(msg);

// cannot recover from a fault
abort();

}

Listing 2.7: Interrupt handler example
void intr_handler(void) {
exc_prologue();

LEDS += exc_get_source() & 0xf;

exc_epilogue();
}

flag. Masking interrupts can be done through the intr_mask_all and intr_mask functions. Disabling interrupt
handling in general is done with the intr_disable function.

Listing 2.6 shows a basic fault handler. As Patmos cannot recover from faults, the handler does not use a special
prologue, and calls abort at the end instead of returning. In the function body, the handler displays the exception
source on the leds and prints a message corresponding to the type of fault that occurred.

Listing 2.7 shows a minimal interrupt handler. It uses the macros exc_prologue and exc_epilogue to save
and restore the processor state. The actual functionality is that the state of the LEDs is incremented according to
the exception source.

39

2 The Architecture of Patmos

Address Name Description

0xf0010000 status Interrupt-enable flag
0xf0010004 mask Mask of enabled interrupts
0xf0010008 pend Pending flags for interrupts
0xf001000c source Number of exception that is about to be served
0xf0010010 sleep Sleep mode (optional)
0xf0010014 cachectrl Cache control

0xf0010080 vec<0> Address of exception handler 0, illegal operation
0xf0010084 vec<1> Address of exception handler 1, illegal memory access
.

0xf00100c0 vec<16> Address of exception handler 16, interrupt 0
.
0xf00100fc vec<31> Address of exception handler 31, interrupt 15

Table 2.15: Exception unit device registers

40

2.8 Dual Issue Instructions

2.8 Dual Issue Instructions

Not all instructions can be executed in both pipelines. In general, the first pipeline implements all instructions, the
second pipeline only a subset. All memory operations are only executed in the first pipeline.

What other instructions can be executed in both pipelines is still open for discussion and evaluation with
benchmarks. A minimal approach, as first step for the hardware implementation, is to have only ALU instructions
available in the second pipelines (excluding predicate manipulation instructions).

2.9 Assembly Format

A VLIW instruction consists of one or two operations that are issued in the first or both pipelines. Each operation
is predicated, the predicate register is specified before the operation in parentheses (). If the predicate register is
prefixed by a !, its negation is considered. If omitted, it defaults to (p0), i.e. always true.

A semi-colon ; or a newline denotes the end of an instruction or operation. If an instruction contains two
operations, the operations in the bundle must be enclosed by curly brackets. Bundles do not need to be separated
by newlines or semi-colons. For bundles consisting of only one operation, the curly brackets are optional. Labels
that are prefixed by .L are local labels.

All register names must be prefixed by $. We use destination before source in the instructions, between
destination and source a = character must be used instead of a comma. Immediate values are not prefixed for
decimal notation, the usual 0 and 0x formats are accepted for octal and hexadecimal immediates. Comments start
with the hash symbol # and are considered to the end of the line. For memory operations, the syntax is [$register
+ offset]. Register or offset can be omitted, in that case the zero register r0 or an offset of 0 is used.

Example:

add 42 to contents of r2
and store result in r1 (first slot)
{ add $r1 = $r2, $42
if r3 equals 50, set p1 to true
cmpeq $p1, $r3, 50 }
if p1 is true, jump to label_1

($p1) br label_1 ; nop; nop # then wait 2 cycles
Load the address of a symbol into r2
li $r2 = .L.str2
perform a memory store and a pred op
{ swc [$r31 + 2] = $r3 ; or $p1 = !$p2, $p3 }
...

label_1:
...

2.9.1 Instruction Mnemonics

The LLVM assembler supports the instructions mnemonics as specified in this document, including all pseudo
instructions.

The paasm assembler and the pasim simulator use the same basic instruction mnemonic, but a i or l suffix
is appended for immediate and long immediate variants, while no suffix in general refers to the register indirect
variant of the instructions. As exception, the control flow instructions use a r suffix for the register indirect variants
and no suffix for the immediate instructions.

2.9.2 Inline Assembly

Inline assembly syntax is similar to GCC inline assembly. It uses %0, %1, . . . as placeholders for operands. Accepted
register constraints are: r or R for any general purpose register, or {<registername>} to use a specific register.

Example:

41

2 The Architecture of Patmos

Parameter Default setting

Main memory 2 MB
Burst length 4 words
Dual issue true for uniprocessor, false for multi-processor and compiler setting
Instruction cache 4 KB, 16 blocks
Data cache 2 KB, direct mapped, write through
Stack cache 2 KB

Table 2.16: Default settings for the Patmos hardware, the emulator, the simulator, and the compiler.

int i, j, k;
asm("mov $r31 = %1 # copy i into r31\n\t"

"add %0 = $r5, %2"
: "=r" (j)
: "r" (i), "{r10}" (k));

2.10 Configuration and Default Setup

Various parameters of the Patmos processor can be configured to trade space for performance. Furthermore, IO
devices and memory controllers are usually specific to FPGA boards. Those configurations are specified in XML
files and can be found at patmos/hardware/config. The base configuration is defined in default.xml. Board
specific configurations, e.g., altde2-115.xml for the default FPGA board DE2-115 from Altera, are specified in
individual XML files.

Tabl 2.16 lists the default settings for the configuration of Patmos and the tools. TODO: Compiler and simulator
settings settings are not yet updated!

42

3 Memory and I/O Subsystem

3.1 Local and Global Address Space

The typed loads of Patmos imply two address spaces: a local address space that is accessed through local loads and
stores, and a global address space that is accessed when using other access types. All caches use memory that is
mapped to the global address space as backing memory. For example, the data cache fetches data from global
memory on a cache miss, and the stack cache uses global memory for spilling and filling. Consequently, there are
two memory maps, one for the local address space and one for the global address space. Tables 3.1 and 3.2 show
the respective address mappings. To simplify address decoding, the top four bits (A31–A28) are generally used
to distinguish between different memory and I/O areas. The address range for I/O devices is divided further to
distinguish the different devices, as discussed in Section 3.2.

As call, ret, and brcf do not include memory type information, the distinction between memory areas for
these instructions is done solely through the address mapping. The boot instruction ROM and the instruction
scratchpad memory are mapped to the lowest 128K of the global address space. Note that this applies only to
these instructions; i.e., a call to address 0x00010100 executes code that is located in the instruction scratchpad,
while non-local loads or stores to the same address access the external SRAM. Therefore, a binary that is loaded to
external memory can use the lowest 128K of memory for data segments, but not for code segments.

As mentioned in Section 2.7, Patmos supports a special local mode, in which cached memory accesses (lwc,
swc, . . .) are redirected to the local address space. This local mode is however only used during booting and not
intended for use in regular applications.

3.2 I/O Devices

Each processor contains a minimum set of standard I/O devices: a device to read configuration information,
an interrupt controller, and a timer. These three devices are always present; all other devices are optional. For
minimum communication with the outside world, a processor is typically attached to a serial port (UART) that
represents stdout.

Within the I/O device memory area, bits 19–16 are used to distinguish between different devices. Most I/O
device registers are mapped and aligned to 32-bit words. If a register is shorter than a word, the upper bits shall be
filled with 0 on a read. With this mapping, each I/O device can have up to 16384 32-bit registers. I/O devices may
support sub-word accesses, but must document that fact if they do.

The I/O device base addresses for pasim are defined in patmos/simulator/include/memory-map.h. For the
library, the constants are defined in newlib/libgloss/patmos/patmos.h and newlib/newlib/libc/machine/
patmos/machine/*.h. The offsets of the I/O devices in the hardware are defined in the configuration XML files
in patmos/hardware/config/*.xml

Address Memory area

0x00000000–0x0000ffff Data Scratchpad Memory
0x00010000–0x0001ffff Instruction Scratchpad Memory (write only)
0xe0000000–0xe3ffffff NoC interface configuration registers
0xe4000000–0xefffffff NoC communication memory
0xf0000000–0xffffffff I/O devices

Table 3.1: Address mapping for local address space

43

3 Memory and I/O Subsystem

Address Memory area

0x00000000–0x0000ffff Boot Instruction ROM (only for code)
0x00010000–0x0001ffff Instruction Scratchpad Memory (only for code)
0x00000000–0x7fffffff External SRAM

Table 3.2: Address mapping for global address space

In the default configuration of Patmos there are six I/O devices: a device to read configuration information, an
interrupt controller, a timer, a UART, a LEDs device, and a Keys device. Table 3.3 shows the I/O devices and the
registers.

3.2.1 CpuInfo

The CpuInfo device holds information about various aspects of the processor configuration. Table 3.4 describes
the available device registers. Additionally, the CpuInfo device contains a ROM that contains the data for the
application in the boot instruction ROM. This boot data ROM starts at offset 0x8000 within the CpuInfo device;
the actual size of the boot data ROM depends on the boot application. All data in the CpuInfo device are read-only.

External Memory Configuration

Bits 15-8 of the ExtMem_Conf device register contain the length of bursts for transactions to the external memory.
Bits 7-0 of the ExtMem_Conf device register shall be 1 if writes to external memory may be combined, and 0
otherwise.

Instruction Cache Configuration

Bits 31-24 of the ICache_Conf device register encode the type of the instruction cache. The value shall be 1 for a
method cache, 2 for a traditional instruction cache, and 0 otherwise. Bits 23-16 encode the replacement policy for
the instruction cache. The value shall be 1 for LRU replacement, 2 for FIFO replacement, and 0 otherwise. Bits
15-0 encode the associativity of the instruction cache. For a method cache, the associativity corresponds to the
number of blocks.

Data Cache Configuration

Bits 31-24 of the DCache_Conf device register shall be 0 for a write-back data cache and 1 for a write-through data
cache. Bits 23-16 encode the replacement policy for the data cache. The value shall be 1 for LRU replacement, 2
for FIFO replacement, and 0 otherwise. Bits 15-0 encode the associativity of the data cache.

Stack Cache Configuration

There are currently no stack cache features to encode and the respective device register always reads 0.

Boot Data Initialization Information

By convention, the first four words of the boot data ROM contain information about data to be copied to the boot
data scratchpad before starting actual execution. Table 3.5 shows the respective data fields. Upon start, the program
should copy src_size bytes of data from src_start to dst_start. If dst_size is greater than src_size, the
remaining bytes are filled with zeroes.

3.2.2 Timer

The timer device provides a means to measure time as well as to trigger an interrupt at a certain point in time.
It provides two 64-bit counters. While the first counter is incremented every clock cycle, the second counter is
incremented every microsecond.

44

3.2 I/O Devices

Address I/O Device read write

0xf0000000 CpuInfo
. . . CpuInfo CpuInfo device information registers (see Section 3.2.1)
0xf0007fff CpuInfo
0xf0008000 CpuInfo Boot Data –
. . . CpuInfo . . . –
0xf0008fff CpuInfo Boot Data –

0xf0010000 ExcUnit
. . . ExcUnit Exception unit and cache control (see Section 2.7)
0xf00100ff ExcUnit

0xf0020000 Timer clock cycles (high word) cycle interrupt time (high word)
0xf0020004 Timer clock cycles (low word) cycle interrupt time (low word)
0xf0020008 Timer time in µs (high word) µs interrupt time (high word)
0xf002000c Timer time in µs (low word) µs interrupt time (low word)

0xf0030000 Deadline may stall the pipeline deadline cycles

0xf0080000 UART status control
0xf0080004 UART receive buffer transmit buffer

0xf0090000 LED – output register

0xf00a0000 Keys input register –

0xf00c0000 Audio
. . . Audio Audio interface (tbd)
0xf00cffff Audio

0xf00d0000 EthMac
. . . EthMac EthMac device (see Section 3.2.5)
0xf00dffff EthMac

0xf00e0000 UART2 (TTL) status control
0xf00e0004 UART2 (TTL) receive buffer transmit buffer

Table 3.3: I/O devices and registers

Address Name Description

0xf0000000 CoreID core ID
0xf0000004 Freq clock frequency
0xf0000008 CoreCnt number of cores in multicore system
0xf000000c Features processor features (number of pipelines)
0xf0000010 ExtMem_Size maximum external memory size
0xf0000014 ExtMem_Conf external memory configuration
0xf0000018 ICache_Size instruction cache size
0xf000001c ICache_Conf instruction cache features
0xf0000020 DCache_Size data cache size
0xf0000024 DCache_Conf data cache features
0xf0000028 SCache_Size stack cache size
0xf000002c SCache_Conf stack cache features
0xf0000030 ISPM_Size instruction scratchpad size
0xf0000034 DSPM_Size data scratchpad size

Table 3.4: CpuInfo device registers

45

3 Memory and I/O Subsystem

Address Name Description

0xf0018000 src_start Start address of data to be copied
0xf0018004 src_size Size of data to be copied
0xf0018008 dst_start Destination for copying
0xf001800c dst_size Size of initialized data

Table 3.5: Boot data initialization information

Bit Status Control

0 TRE TX Transmit ready – –
1 DAV RX Data available – –

Table 3.6: UART status bits

Interrupts can be triggered by storing a value in the “cycle interrupt time” and “µs interrupt time” registers. The
timer device will then trigger an interrupt when the respective counter reaches the value provided in that register.
The “cycle” interrupt is tied to interrupt 0; the “µs” interrupt is tied to interrupt 1.

To read out the 64-bit counter values consistently, the low word (at the higher address) must be read first. This
latches the high word of the counter into an internal register, which is then returned when reading the high word (at
the lower address). Similarly, the low word of the interrupt times must be written first. The write to the internal
64-bit register takes effect when the high word is written. For short measurements, where the lower word is usually
large enough (i.e., up to 2000 s measurements with the µs counter), the upper word can be ignored.

3.2.3 UART

The UART is a minimal IO device for stdout and stdin. It can also used for program download. Table 3.6 shows
the bits of the control register. Writing to the data register adds the respective value to the transmission queue of
the UART. Reading the data register removes a previously received byte from the reception queue of the UART.

3.2.4 Deadline

The deadline device provides a facility for delaying execution for a specified amount of time. In each subsequent
cycle, the counter is decremented by 1. A load to the address stalls the processor pipeline until the counter reaches
0.

3.2.5 EthMac

Patmos supports Ethernet connections through an EthMac device [8, 9]. This device is usually mapped starting at
address 0xf00d0000. The RX/TX buffer of the device is mapped to offsets 0x0000 to 0xefff, while the device
registers of the Ethernet controller are mapped to offsets 0xf000 to 0xffff. For detailed information on the
EthMac device, please refer to the cited reports.

3.2.6 Memory Management Unit

Patmos can be configured to include a memory management unit (MMU). The configuration port of this MMU is
then mapped starting at address 0xf0070000. The MMU uses segmentation for memory protection and address
translation; it supports eight segments. Table 3.7 shows the mapping of segment information.

The bit 31 of a configuration register (e.g., Seg0_Conf) is set if the respective segment is readable, bit 30 is set
if the segment is writable, and bit 29 is set if the segment is executable. Bits 28-0 of the configuration register
contain the length of the respective segment.

The MMU enforces memory protection and translates virtual addresses to physical addresses. The segment
to be used is encoded in the three most significant bits of the virtual address (i.e., bits 31-29). Bits 28-0 of the

46

3.3 Stack Cache

Address Name Description

0xf0070000 Seg0_Base Base address of segment 0
0xf0070004 Seg0_Conf Configuration register of segment 0
.
0xf0070038 Seg7_Base Base address of segment 7
0xf007003c Seg7_Conf Configuration register of segment 7

Table 3.7: Memory management unit device registers

virtual address represent the offset into the segment. If this offset is less than the length of the segment and if
the respective permission bit is set, the access proceeds. Otherwise, an illegal memory access exception is raised.
Memory protection is only enforced in user mode, i.e., the segment length and permission check is bypassed in
privileged mode. The physical address is computed by adding the offset to the base address of the respective
segment (e.g. Seg0_Base).

3.3 Stack Cache

The stack cache is a processor-local, on-chip memory [1]. The stack cache operates similar to a ring buffer. It can
be seen as a stack-cache-sized window into the main memory address range. To manage the stack cache, we use
three additional instructions: reserve, ensure, and free. Two hardware registers define which part of the stack
area is currently in the stack cache.

3.3.1 Stack Cache Manipulation

We present the mechanics of the stack cache in C code for easier readability. However, the hardware implementation
is a synchronous design and the algorithm is implemented by a state machine that handles the memory spill and fill
operations. In the C code following data structures are used:

mem is an array representing the main memory,

sc is an array representing the stack cache,

m_top is the register pointing to the top of the saved stack content in the main memory, and

sc_top points to the top element in the stack cache.

The two pointers are full-length address registers. However, when addressing the stack cache, only the lower n
bits are used for a stack cache of a size of 2n words. The constant SC_SIZE represents the stack cache size and
SC_MASK is the bit mask for the stack cache addressing. The stack cache is managed in 32-bit words.

At program start the stack cache is empty and both pointers, m_top and sc_top, point to the same address, the
address that one higher as the stack area. m_top points to the last spilled word in main memory. Similar, sc_top
points to the last slot in the stack frame (top of stack). Therefore, the number of currently valid elements in the
stack cache is m_top - sc_top.

The compiler generates code to grow the stack downward, as it is common for many architectures. Growing the
stack downwards has historical reasons. However, for multi-threaded systems each thread needs a reserved, fixed
memory area for the stack and there is no benefit from growing the stack downwards.

Reserve The reserve instruction, as shown in Figure 3.1, reserves space in the stack cache. Typed load and
store instructions use this reserved space. The reserve instruction may spill data to the main memory. This spilling
happens when there are not enough free words in the stack cache to reserve the requested space.

The processor reads the number of words to be reserved (the immediate operand of the instruction) in the decode
stage. The processor adjusts the sc_top register in the execution stage and also computes how many words need
to be spilled in the execution stage. The processor spills to the main memory in the memory stage, as shown by the
for loop in Figure 3.1.

47

3 Memory and I/O Subsystem

void reserve(int n) {

int nspill, i;

sc_top -= n;
nspill = m_top - sc_top - SC_SIZE;
for (i=0; i<nspill; ++i) {

--m_top;
mem[m_top] = sc[m_top & SC_MASK];

}
}

Figure 3.1: The reserve instruction provides n free words in the stack cache. It may spill data into main memory.

void free(int n) {

sc_top += n;
if (sc_top > m_top) {

m_top = sc_top;
}

}

Figure 3.2: The free instruction drops n elements from the stack cache. It may change the top memory pointer
m_top.

Free The free instruction frees the reserved space on the stack. It does not fill previously spilled data back into
the stack cache. It just changes the top of the stack pointer and may change the top of the memory pointer, as
shown in Figure 3.2.

Ensure Returning into a function needs to ensure that the stack frame of this function is available in the stack
cache. The ensure instruction, as shown in Figure 3.3, guarantees this condition. This instruction may need to fill
back the stack cache with previously spilled data. This happens when the number of valid words in the stack cache
is less than the number of words that need to be in the stack cache. Filling the stack cache is shown in the loop in
Figure 3.3.

One processor register serves as stack pointer and points to the end of the stack frame. Load and store instructions
use displacement addressing relative to this stack pointer to access the stack cache.

As with regular ring buffers, when the size of the stack cache is not sufficient in order to reserve additional space
requested, it needs to spill some data so far kept in the stack cache to the global memory, i.e., whenever m_top -
sc_top > stack cache size. A major difference, however, is that freeing space does not imply the reloading of data
from the global memory. When a free operation frees all stack space currently held in the cache (or more), the
special register ss is accordingly incremented.

The stack cache is organized in blocks of fixed size, e.g. 32 bytes. All spill and fill operations are performed on
the block level, while reserve, free and ensure operations are in words.

Addresses for load and store operations from/to the stack cache are relative to the sc_top pointer.
The base address for fill and spill operations of the stack cache is kept in special register ss. st contains the

address the top of the stack cache would get if the stack cache would be fully spilled to memory.
The organization of the stack cache implies some limitations:

• The maximum size of stack data accessible at any moment is limited to the size of the cache. The stack
frame can be split, such that at any moment only a subset of the entire stack frame has to be resident in the
stack cache, or a shadow stack frame in global memory can be allocated.

48

3.4 Instruction Cache

void ensure(int n) {

int nfill, i;

nfill = n - (m_top - sc_top);
for (i=0; i<nfill; ++i) {

sc[m_top & SC_MASK] = mem[m_top];
++m_top;

}
}

Figure 3.3: The ensure instruction ensures that at least n elements are valid in the stack cache. It may need to fill
data from main memory.

// load one word from the stack cache
// addr is a main memory address (register value plus offset)

int load(int addr) {
return sc[(sc_top + addr) & SC_MASK];

}

// store one word into the stack cache
// addr is a plain main memory address

void store(int addr, int val) {
sc[(st_top + addr) & SC_MASK] = val;

}

Figure 3.4: Pseudo code for the load and store instructions.

• When passing pointers to data on the stack cache to other functions it has to be ensured that: (1) the data will
be available in the cache, (2) the pointer is only used with load and store operations of the stack cache, and
(3) the relative displacement due to reserve and free operations on the stack is known. Alternatively, aliased
stack data can be kept on a shadow stack in the global memory without restrictions.

• The stack control operations only allow allocating constant-sized junks. Computed array sizes (C 90) and
alloca with a computed allocation size have to be realized using a shadow stack in global memory.

• The calling conventions for functions having a large number of arguments have to be adapted to account for
the limitation of the stack cache size (see Section 4).

3.4 Instruction Cache

Patmos supports two alternative solutions for the caching of instructions; it can be configured to use either a
traditional instruction cache or a method cache. The latter caches contiguous sequences of code (typically whole
functions) and is described in Section 3.4.1. The traditional instruction cache is described in Section 3.4.2.

3.4.1 Method Cache

The method cache caches contiguous sequences of code. These code sequences will often correspond to entire
functions. However, functions can be split into smaller chunks in order to reduce to overhead of loading the entire

49

3 Memory and I/O Subsystem

length burst aligned

first instruction

second instruction
. . .

Figure 3.5: Layout of code sequences intended to be cached in the method cache.

function at once. Code transfers between the respective junks of the original function can be performed using the
brcf instruction. A code sequence is either kept entirely in the method cache, or is entirely purged from the cache.
It is not possible to keep code sequences partially in the cache.

With a method cache, cache misses may occur only upon calls, returns, or brcf instructions. All other
instructions are guaranteed cache hits. Furthermore, cache misses occur at the same point in the processor
pipeline as data cache misses, in the memory stage. Therefore, the method cache eliminates interferences between
instruction cache misses and data cache misses. Consequently, a method cache can lead to more predictable
behavior than a traditional instruction cache.

Code intended for caching should be aligned in the global memory according to the memory burst size. Call
and branch instructions do not encode the size of the target code sequence. The size is thus encoded in units of
bytes right in front of the first instruction of a code sequence that is intended for caching. Figure 3.5 illustrates this
convention.

The method cache in Patmos is fully associative and implements a FIFO replacement policy. The cache tags and
the storage for memory blocks are managed separately, i.e., there is no fixed mapping between tags and locations
in the cache memory. Code sequences are evicted when the respective tag entry has to be reused or when the
associated cache memory is overwritten. The code sequences that are loaded into the cache are internally aligned
to 64-bit (8 byte) boundaries, such that a small amount of padding may occur inside the cache.

3.4.2 Traditional Instruction Cache

Patmos also supports a traditional instruction cache that caches fixed blocks rather than variably sized sequences of
code. A direct-mapped traditional instruction cache is available as hardware implementation, and further variants
are available in the simulator. By default, the size of an instruction cache line equals the length of a memory burst.

3.5 Data Cache

In addition to the stack cache, Patmos also contains a data cache, which is responsible for caching regular cached
memory accesses such as lwc. As a write-through policy is beneficial for predictability, the data cache of Patmos
uses this policy by default. The hardware implementation provides the options of a direct-mapped data cache and a
two-way set associative cache with LRU replacement. Furthermore, a hardware implementation of a direct-mapped
data cache with a write-back policy is provided. However, due to cache coherence issues, the write-back policy
should not be used in multicore configurations. In all implementations the size of data cache lines equals the length
of a memory burst.

The multicore versions of Patmos do not implement any cache coherence protocol in hardware. However, with a
write-through caching policy, it is sufficient to invalidate the data cache through the cache control register in the
exception unit (see Section 2.7.7) to ensure that subsequent memory accesses will see the most recent values. Cache
coherence can therefore be implemented in software whenever communication via shared memory is required.

3.6 Hardware Interface

For the connection of Patmos to a memory controller, I/O devices, the core-to-core network on chip, and/or the
memory arbiter an interface standard needs to be specified. Several standards are available. We decided to base the

50

3.6 Hardware Interface

MEMEX

slavemaster

Figure 3.6: Localization of OCP signals in the pipeline

OCPcore

OCPio

OCPcache

split $

OCPburst

local global
pipeline

general IOcore IO memory

Figure 3.7: OCP levels in Patmos

interface on OCP1 [2] and subset the standard as we need it. While we use OCP as basis for the hardware interface
of Patmos, we expressly do not claim compliance with the OCP specification.

Figure 3.6 shows the OCP signals in the Patmos pipeline. The master signals are generated in the execute stage,
and the slave signals are captured in the memory stage.2 The different variants of the OCP protocol (OCPcore,
OCPcache, OCPio, and OCPburst) in the scope of the Patmos processor are shown in Figure 3.7.

3.6.1 OCPcore

This is the simplest variant of the OCP protocol used in Patmos and shall be used for IO devices. The variant of
OCP is generated by the pipeline for the local address space. OCPcore is tailored to accesses to on-chip memories,
which on FPGAs necessarily include an registers on the input ports (read and write address, write data, and
write enable). Furthermore, OCPcore is the interface for general IO devices. The respective signals are shown in
Table 3.8. To enable sub-word transfers of data, the signal MByteEn is used.

OCPcore is a simple protocol with single cycle command and reply. A read (RD) or write (WR) command is valid
for a single cycle. A data response for a read includes the reponse DVA and is expect earliest in the following cycle.
Writes also need to be acknowledged with a DVA response (earliest in the following cycle). The slave can delay the
response for arbitrary cycles. The following assumptions apply:

• Only reads (RD) and writes (WR) are supported. Writes require a response (writeresp_enable=1), such that
every command must be followed by a response.

• No SCmdAccept or MRespAccept, flow control is done solely via SResp.

• Slaves may generate responses earliest in the cycle after a command.

• The master may issue commands in the same cycle as the slave sends its response, i.e., basic support for
pipelining is required.

• MByteEn is assumed to be properly aligned (force_aligned=1). The signal can be ignored for read accesses
without side effects.

Figure 3.8 shows a sequence read/write/read in OCPcore, where the slave responds to the first read in the
following cycle (the earliest possibility). The write response is delayed by one cycle. The second read response is
also delayed by an additional cycle.

A: The master issues a read by setting MCmd to RD, MAddr to A1 and MByteEn to E1.

1The OCP specification is available at http://accellera.org/downloads/standards/ocp/
2For clarity, the handling of both parts is implemented in the file Memory.scala.

51

http://accellera.org/downloads/standards/ocp/

3 Memory and I/O Subsystem

Table 3.8: OCPcore signals

Signal Description

MCmd Command (RD or WR)
MAddr Address, byte-based, lowest two bits always 0
MData Data for writes, 32 bits
MByteEn Byte enables for sub-word accesses, 4 bits

SResp Response (NULL or DVA)
SData Data for reads, 32 bits

Clk

MCmd IDLE RD1 WR2 IDLE RD3 IDLE

MAddr A1 A2 A3

MData D2

MByteEn E1 E2 E3

SResp NULL DVA1 NULL DVA2 NULL DVA3 NULL

SData D1 D3

A B C D E F G

Figure 3.8: Timing diagram for OCPcore

B: The slave responds to the read issued in cycle A by setting SResp to DVA and returning the appropriate data. The
master can issue the next command in the same cycle as it receives the response and issues a write command
WR. The master provides the byte enable value E2 along with the data D2 to specify which bytes should be
actually written.

C: The slave does not respond immediately and the master is stalled. MCmd must be IDLE while the master is
stalled.

D: The slave responds to the write issued in cycle B. The master issues a read in the same cycle.

E: The slave does not respond to the read request, delaying it by one cycle.

F: The slave responds to the read request issued in cycle D.

G: The interface is idle.

3.6.2 OCPcache

This OCP variant is generated for the global address space and is used for communication between the pipeline
and the caches. It is the same as OCPcore, but includes an additional signal MAddrSpace to specify the cache that
should serve the access.

3.6.3 OCPio

The OCPio level is derived from the OCPcore level by inserting a register in the master signals. OCPio contains
additional signals and all signals are shown in Table 3.9. This interface is needed to support clock domain crossing.
Currently it is only used at the interface to the configuration port of the Argo network-on-chip.

52

3.6 Hardware Interface

Table 3.9: OCPio signals

Signal Description

MCmd Command
MAddr Address, byte-based, lowest two bits always 0
MData Data for writes, 32 bits
MByteEn Byte enables for sub-word accesses, 4 bits
MRespAccept Enable handshaking with SResp

SResp Response
SData Data for reads, 32 bits
SCmdAccept Flow control towards the command from the master

Clk

MCmd IDLE RD1 WR2 IDLE RD3 IDLE

MAddr A1 A2 A3

MData D2

MByteEn E1 E2 E3

MRespAccept

SResp NULL DVA1 NULL DVA2 DVA3 NULL

SData D1 D3

SCmdAccept

A B C D E F

Figure 3.9: Timing diagram for OCPio

OCPio is slightly more flexible than OCPcore and appropriate for I/O devices that do not (or cannot) follow the
semantics of OCPcore. Registering the master signals changes the protocol as follows:

• Slaves may generate responses in the same cycle as they receive a command.

• Commands are issued earliest in the cycle after a response (no pipelining).

• SCmdAccept is supported. It is sufficient to register the master signals only if the currently registered
command is IDLE or SCmdAccept is high.

• In order to have symmetric handshaking for commands and responses and to facilitate clock-domain
crossing, OCPio also includes a signal MRespAccept. An OCPio port that is derived directly from the
pipeline’s OCPcore port always accepts responses.

Figure 3.9 shows a sequence read/write/read in OCPio, where the slave does not accept the write immediately
and delays the response to the write by one cycle.

A: The master issues a read by setting MCmd to RD. The slave accepts the command by setting SCmdAccept to high
and responds immediately by setting SResp to DVA and returning the appropriate data.

B: The master issues a write command WR with data D2 and byte enables E2. The slave signals that it does not
accept the command by setting SCmdAccept to low.

53

3 Memory and I/O Subsystem

Table 3.10: OCPburst signals

Signal Description

MCmd Command
MAddr Address, byte-based, lowest two bits always 0
MData Data for writes, 32 bits
MDataByteEn Byte enables for sub-word writes, 4 bits
MDataValid Signal that data is valid, 1 bit

SResp Response
SData Data for reads, 32 bits
SCmdAccept Signal that command is accepted, 1 bit
SDataAccept Signal that data is accepted, 1 bit

C: As the slave did not accept the command in cycle B, the master still issues the command. The slave accepts the
command by setting SCmdAccept to high.

D: The slave responds to the write it accepted in cycle C. Note that a) the master is not allowed to issue a new
command immediately and b) SCmdAccept may take any value, because MCmd is IDLE.

E: The master issues a read to which the slave responds immediately.

3.6.4 OCPburst

The caches access the external memory through bursts only; Table 3.10 shows the signals of the OCPburst interface.
The tie-off value for MBurstLength is 4, and MBurstSingleReq is tied off to 1. This means that the master supplies
four data words for each write command, and the slave returns four words for each read command. The burst
length is configurable, but might be restricted by the external memory and the external memory controller. All
other burst-related signals are tied off to their default values. This entails that the only sequence for burst addresses
is INCR. Bursts always start at an address that is aligned to the burst size (burst_aligned=1). Furthermore,
reqdata_together is set to 1, i.e., write commands and the respective first word are issued together. Instead
of the signal MByteEn, OCPburst uses the signal MDataByteEn. This implies that partial write transfers are fully
supported, but partial read commands are unsupported.

We assume that the master provides data for burst accesses in consecutive cycles and that slaves can accept
all burst data words once they accept the first word. To enable handshaking for the acceptance of the first data
word, the OCPburst variant includes the signals MDataValid and SDataAccept. As reqdata_together is set to
1, delaying the acceptance of data also delays the acceptance of write commands. In order to do the same for read
commands, OCPburst also includes the signal SCmdAccept. The signals SCmdAccept and SDataAccept can be
generated by the same logic. For the acceptance of write commands they must be identical, otherwise at least one
of the signals can have an undefined value. We assume that slaves return burst read data in consecutive cycles.

The first response to a read command may be given in the cycle after the command. The response to a write
command may be given earliest in the cycle after the last data word was sent. Commands may be issued earliest in
the cycle after the last response from an earlier command is received.

Figure 3.10 shows a read followed by a write in OCPburst, were the slave does not accept the first data word
immediately.

A: The master issues a read command by setting MCmd to RD. The slave accepts by asserting SCmdAccept.

B: The slave provides the first response DVA1.0, with data from address A1.

C: The slave provides the second response DVA1.1, with data from address A1+4.

D: The slave provides the third response DVA1.2, with data from address A1+8.

E: The slave provides the fourth and last response DVA1.3, with data from address A1+12.

54

3.6 Hardware Interface

Clk

MCmd IDLE RD1 IDLE WR1 IDLE

MAddr A1 A2

MData D2.0 D2.1 D2.2 D2.3

MDataByteEn E2.0 E2.1 E2.2 E2.3

MDataValid

SResp NULL NULL DVA1.0 DVA1.1 DVA1.2 DVA1.3 NULL DVA2 NULL

SData D1.0 D1.1 D1.2 D1.3

SCmdAccept

SDataAccept

A B C D E F G H I J K L

Figure 3.10: Timing diagram for OCPburst

F: The master issues a write command by setting MCmd to WR and provides the first data word D2.0 width byte
enables E2.0 It signals that the data is valid by asserting MDataValid. The slave signals that it cannot accept
the data by setting SDataAccept to low.

G: As the slave did not accept the data in cycle F, the master keeps issuing the command and providing the data
word D2.0. The slave now accepts the data by setting SDataAccept to high.

H: The master provides the second data word, D2.1 with byte enables E2.1.

I: The master provides the third data word, D2.2 with byte enables E2.2.

J: The master provides the fourth and last data word, D2.3 with byte enables E2.3.

K: The slave responds to the write burst by setting SResp to DVA.

3.6.5 Remarks

SCmdAccept is valid only while a command is unequal to IDLE. Consequently, SCmdAccept must be properly
multiplexed to support multiple slaves. For handshaking via SResp, it is sufficient to combine the responses of
different slaves with OR.

In OCPcore and OCPcache, slaves accept commands implicitly. Asserting a command for more than one
cycle corresponds to issuing two separate commands. This is only allowed if the slave responds in the cycle
immediately after the first command. In OCPio and OCPburst, slaves accept commands in the cycle where they
assert SCmdAccept. Continuing to assert a command in the next cycle corresponds to a separate command. This is
disallowed in OCPburst, and allowed in OCPio only if the slave responds immediately in the cycle where it asserts
SCmdAccept.

The burst length is restricted to a constant which is a power of 2. The address must be aligned. Burst data must
be provided in consecutive cycles. For reads, SResp is active during these cycles and the number of responses must
always match the burst length. Error responses (where SResp has value ERR) may not abort the response sequence
prematurely. For a burst write, the master may have to provide D1 for two or more cycles if SDataAccept is not
active in the first cycle of the transaction.

55

3 Memory and I/O Subsystem

Listing 3.1: Companion object for the counter device
object Counter extends DeviceObject {

def init(params: Map[String, String]) = {}

def create(params: Map[String, String]): Counter = Module(new Counter())

trait Pins {}
}

As the first data word must be accepted together with the command and we require burst data to be provided in
consecutive cycles, the signals MDataValid and SDataAccept may appear to be superfluous. However, they are
required by the OCP standard for the inclusion of the MDataByteEn signal, which provides separate byte enables
for each word in a burst transaction.

3.7 Example I/O Device

In this section we summarize the chapter by showing how to build a simple I/O device, a counter. Several examples
of I/O devices can be found in patmos/hardware/src/io. Adding an I/O device to Patmos consists of 2–3 steps:

• Describing the I/O device in Chisel

• Adding the device and the address into the configuration file

• If the device contains pins to the external world, the pins need to be added to the top-level (VHDL) file and
to the Quartus (.qsf) or Xilinx configuration files

An I/O device has to extend CoreDevice and needs to define a companion object that extends DeviceObject.
The interface to the processor is usually OCPcore where handshaking for the data is available via SResp. In this
example we will define a read only device that implements a simple counter. The complete code for this device can
be found in patmos/hardware/src/io/Counter.scala.

Each device needs to define a companion object that is used as a factory object to create devices and needs
to overwrite two methods: init() and create() and needs to overwrite the trait Pins. Listing 3.1 shows the
the companion object for our counter device. The method init() can be used to pass parameters from the
configuration file (e.g., altde2-115.xml). As we do not use parameters in our simple example we just define an
empty method. The method create() is the singleton method that shall return an instance of an I/O device. In
our example we create one Counter object, wrap it into a Module, as any Chisel component, and return it from
create(). The method create() itself can receive parameters, which we do not use in this example.

Listing 3.2 shows the first, incomplete, version of our I/O device. We simply return 42 on a read from the device.
However, we also need to adhere to the OCP signaling. We need to response to a read command in the next clock
cycle with a data valid signal (DVA). Otherwise we need to set the response to NULL.

Note that the read needs to be valid in the very same cycle when the output of respReg becomes DVA. In the first
version of this example we ignore writes to the counter.3

Listing 3.3 shows the last step, configuring Patmos to use the counter. In our example we change the configuration
file that is used for the default configuration: patmos/hardware/config/altde2-115.xml. The two lines from
Listing 3.3 need to added into section IOs and Devs, respectively. Offset 11 is the next available I/O address and
results in mapping our counter to I/O address 0xf00b0000 (each I/O device has a 16 bit local address and 11 in
decimal is ‘b’ in hexadecimal).

Listing 3.4 shows a small test program to read our counter device and write the value to stdout. As our I/O
device lives in the local memory area we need to tell the C compiler to the local load and store instructions to

3If we write to the counter device, the device will not generate a DVA for Resp and therefore stall the pipeline forever. A complete design
should at least ignore writes, but response to them.

56

3.7 Example I/O Device

Listing 3.2: Class for the counter device
class Counter() extends CoreDevice() {

io.ocp.S.Data := UInt(42)

val respReg = Reg(init = OcpResp.NULL)

respReg := OcpResp.NULL
when(io.ocp.M.Cmd === OcpCmd.RD) {
respReg := OcpResp.DVA

}

io.ocp.S.Resp := respReg
}

Listing 3.3: Configuring the processor to include our counter device
<IO DevTypeRef="Counter" offset="11"/>

<Dev DevType="Counter" entity="Counter" iface="OcpCore"/>

Listing 3.4: Testing the counter device
#include <machine/patmos.h>
#include <stdio.h>

int main() {

volatile _IODEV int *io_ptr = (volatile _IODEV int *) 0xf00b0000;
int val;

val = *io_ptr;
printf("%d\n", val);

}

access the I/O device. This is performed by defining a special pointer with the macro _IODEV, which we import by
including <machine/patmos.h>.

To implement a counter we need a register and some addition. Listing 3.5 hows the Chisel code for this free
running counter. We now have a device the ticks at the processor frequency and can be used to measure execution
time. Listing 3.6 shows how to use our counter to measure the execution time of the printf function with a simple
string print out.

To complete the example we add a write to the device where we can set the value of the counter. Listing 3.7
shows the complete code of our counter where we can set the value. On a OCP write we take the data value in the
same clock cycle as input to the counter register. As with the read operation, we acknowledge the write in the
following clock cycle with a DVA.

When the I/O device has more than one register (or some memory), the address signals from the OCP connection
(io.ocp.M.Addr) are used for address decoding. See for an example the CpuInfo device.

57

3 Memory and I/O Subsystem

Listing 3.5: Chisel code for counting
val countReg = Reg(init = UInt(0, 32))
countReg := countReg + UInt(1)
io.ocp.S.Data := countReg

Listing 3.6: Measure execution time
val1 = *io_ptr;
printf("Hello");
val2 = *io_ptr;

printf("Execution time is %d\n", val2-val1);

Listing 3.7: A writable counter
class Counter() extends CoreDevice() {

val countReg = Reg(init = UInt(0, 32))
countReg := countReg + UInt(1)
when (io.ocp.M.Cmd === OcpCmd.WR) {
countReg := io.ocp.M.Data

}

val respReg = Reg(init = OcpResp.NULL)
respReg := OcpResp.NULL
when(io.ocp.M.Cmd === OcpCmd.RD || io.ocp.M.Cmd === OcpCmd.WR) {
respReg := OcpResp.DVA

}

io.ocp.S.Data := countReg
io.ocp.S.Resp := respReg

}

58

4 Application Binary Interface

4.1 Data Representation

Data words in memories are stored using the big-endian data representation, this also includes the instruction
representation.

4.2 Register Usage Conventions

The register usage conventions for the general purpose registers are as follows:

• r0 is defined to be zero at all times. This is actually not just a convention, but implemented by the hardware.

• r1 and r2 are used to pass the return value on function calls.
For 64 bit results, the high part is stored in r1, the low part in r2. 32 bit results are returned using r1 only.

• r3 through r8 are used to pass arguments on function calls.
For 64 bit arguments, the high part is stored first, followed by the low part.
E.g., for a 64 bit argument passed in [r3,r4], the high part is in r3, the low part in r4.

• r29 is used as temp register.

• r30 is defined as the frame pointer and r31 is defined as the stack pointer for the shadow stack in global
memory. The use of a frame pointer is optional, the register can freely be used otherwise. r31 is guaranteed
to always hold the current stack pointer and is not used otherwise by the compiler.

• r1 through r20 are caller-saved scratch registers.

• r21 through r31 are callee-saved saved registers.

The usage conventions of the predicate registers are as follows:

• all predicate registers are callee-saved saved registers.

The usage conventions of the special registers are as follows:

• s0, representing the predicate registers, is a callee-saved saved register.

• The stack cache control registers ss and st are callee-saved saved registers.

• The return information registers s7-s10 (srb, sro, sxb, sxo) are caller-saved saved registers.

• All other special registers are caller-saved scratch registers and should not be used across function calls.

4.3 Function Calls

Function calls have to be executed using the call instruction that automatically prefetches the target function to
the method cache and stores the return information in the special registers srb and sro.

The register usage conventions of the previous section indicate which registers are preserved across function
calls.

The first 6 arguments of integral data type are passed in registers, where 64-bit integer and floating point types
occupy two registers. All other arguments are passed on the shadow stack via the global memory.

59

4 Application Binary Interface

When the return function base srb and the return offset sro needs to be saved to the stack, they have to be saved
as the first elements of the function’s stack frame, i.e., right after the stack frame of the calling function. Note that
in contrast to br and brcf the return offset refers to the next instruction after the delay slot of the corresponding
call and can be implementation dependent (cf. the description of the call and ret instructions).

4.4 Sub-Functions

A function can be split into several sub-functions. The program is only allowed to use br to jump within the
same sub-function. To enter a different sub-function, brcf must be used. It can only be used to jump to the first
instruction of a sub-function.

In contrast to call, brcf does not provide link information. Executing ret in a sub-function will therefore
return to the last call, not to the last brcf. Function offsets however are relative to the sub-function base, not to
the surrounding function. The function base register r30 must therefore be set to the base address of the current
sub-function for calls inside sub-functions.

A sub-function must be aligned and must be prefixed with a word containing the size of the sub-function, like
for a regular function. If a function is split into sub-functions, the first sub-function must also be prefixed with the
size of the first sub-function, not with the size of the whole function.

There are no calling conventions for jumps between sub-functions, for the compiler this behaves just like a
regular jump.

4.5 Stack Layout

All stack data in the global memory, either managed by the stack cache or using a frame/stack pointer, grows from
top-to-bottom. The use of a frame pointer is optional.

Unwinding of the call stack is done on the stack-cache managed stack frame, following the conventions declared
in the previous subsection on function calls.

4.6 Interrupts and Context Switching

Interrupt handlers may use the shadow stack pointer r31 to spill registers to the shadow stack. Interrupt handlers
must ensure that all special registers that might be in use when the interrupt occurs are saved and restored. Here is
an example of storing and restoring the context for context switching.

sub $r31 = $r31, 56
swc [$r31 + 0] = $r20 // free some registers
swc [$r31 + 1] = $r21
swc [$r31 + 2] = $r22
swc [$r31 + 3] = $r23
mfs $r20 = $s0
mfs $r21 = $sm
mfs $r22 = $sl // by now any mul should be finished
mfs $r23 = $sh
swc [$r31 + 4] = $r20
swc [$r31 + 5] = $r21
swc [$r31 + 6] = $r22
swc [$r31 + 7] = $r23
mfs $r22 = $ss // read out cache pointers, spill
mfs $r23 = $st
sub $r22 = $r23, $r22
sspill $r22 // spill the memory, s5 == s6 now
swc [$r31 + 8] = $r22 // store the stack pointer
swc [$r31 + 9] = $r23 // store stack size

60

4.6 Interrupts and Context Switching

mfs $r20 = $srb // store return info
mfs $r21 = $sro
mfs $r22 = $sxb
mfs $r23 = $sxo
swc [$r31 + 10] = $r20
swc [$r31 + 11] = $r21
swc [$r31 + 12] = $r22
swc [$r31 + 13] = $r23
swc [$r31 + 14] = $r30 // store frame pointer
...

// restore
lwc $r20 = [$r31 + 4]
lwc $r21 = [$r31 + 5]
lwc $r22 = [$r31 + 6]
lwc $r23 = [$r31 + 7]
mts $s0 = $r20
mts $sm = $r21
mts $sl = $r22
mts $sh = $r23
lwc $r22 = [$r31 + 8] // restore the stack
lwc $r23 = [$r31 + 9]
mts $ss = $r23
mts $st = $r23 // set top = spill and fill from memory
sens $r22
lwc $r20 = [$r31 + 10] // restore return registers
lwc $r21 = [$r31 + 11]
lwc $r22 = [$r31 + 12]
lwc $r23 = [$r31 + 13]
mts $srb = $r20 // restore return infos and registers
mts $sro = $r21
mts $sxb = $r22
mts $sxo = $r23
lwc $r20 = [$r31 + 0]
lwc $r21 = [$r31 + 1]
lwc $r22 = [$r31 + 2]
lwc $r23 = [$r31 + 3]
lwc $r30 = [$r31 + 14]
xret
add $r31 = $r31, 52
nop
nop

TODO: Check why add is 52 and not 56 as in the beginning.

61

4 Application Binary Interface

62

5 Implementation

After a first implementation of Patmos in VHDL we did a cleanup and rewrite in a the hardware description
language Chisel [3]. The following notes on the implementation of Patmos and implementation decisions is based
on first design discussions within the VHDL version and concrete implementation experiments with Chisel. All
size and frequency numbers are from the Chisel implementation. A comparison between VHDL and Chisel would
be of great interest.

For a comparison between Chisel and VHDL we take a snapshot when both versions where about at the same
functionality: LoC, excluding the copyright header at 6.4.2013: Chisel: 996 VHDL: 3020. However, the VHDL
code was written quite verbatim and more usage of record would probably result in about 2000 L0C. Still Chisel
is more compact and probably easier readable.

5.1 Component Organization and Pipeline Structure

The architecture of Patmos is structured around five components, each representing one pipeline stage. Each
component contains the left pipeline register. E.g., the output of the DEC stage (decode signals, the two register
values, and the immediate field) is combinatorial from the decode stage and registered in the EX stage. The
motivation of this organization is that input registers of on-chip memory elements (e.g., instruction memory,
register file, and data memory) are part of the pipeline register. They need to be fed unconditionally from the
unregistered output of the former stage.

Each stage has exactly one pipeline register, which is placed at the begin of the component. The pipeline
registers use an enable for stalling. Register that have no enable (input registers of on-chip memories) need a
shadow register and a multiplexer for stalls.

The interface from the EX stage to the MEM stage might use one field for ALU results and the store data or
individual fields. Individual fields might reduce the pressure on the ALU multiplexers.

5.2 Register File

There are two options to implement the register file (RF) in an FPGA: (1) use two on-chip memories to provide
two read ports and one write port, or (2) use dedicated registers and larger multiplexer structures for the read ports.
Usually one aims to use on-chip memory for the RF. However, in a design constraint largely by the available
amount of on-chip memory, a RF built out of registers might be preferable.

For a dual issue pipeline we need 4 read ports and 2 write ports into the RF. We explored double clocking of a
on-chip based RF in [13]. It is feasible, the resulting maximum frequency fits for the ALU path, but feels a little
bit brittle. A RF from registers might give a more robust design for the two write ports.

The ideal solution would be to make it configurable if on-chip memory or LCs are used. The issue width should
also be configurable.

5.3 Resource and Fmax Numbers

State 13.3.2013 with Chisel and DE2-70: A shared field (for EX to MEM?) results 3435 LCs and 81.7 MHz, two
fields in 3499 LCs and 81.8 MHz. Looks like not a big deal, but just 64 more LCs. Where does this cost come
from? A very inefficient enable on the pipeline register (MUX instead of an enable signal?).

63

5 Implementation

5.4 ALU Discussion

The large multiplexers and the forwarding limit the maximum frequency. We have already removed the expensive
rotate instructions and the abs instruction.

Current version (4.4.2013) with all ALU operations and test case ALU.s for the DE2-70 is: 3415 LCs, 85.44
MHz. Dropping rsub and all unary ALU operations: 3173 LCs, 91.91 MHz.

TODO: This should be updated. Maybe even with some statistics how the size (and performance ?) changed
over time.

64

6 Build Instructions

In the following we describe: (1) the installation of needed tool under Ubuntu, Mac OS X, and Windows 10 (2)
how to build the Patmos tool chain (e.g., compiler), and (3) how to get started with Patmos.

For an easier start we provide a VM image with Ubuntu 20.04 LTS including all tools installed for download
from: http://patmos.compute.dtu.dk/

6.1 Setup

In the following we present how to setup all needed tools in Ubuntu, Mac OS X, and Windows 10. After setting up
the tools, section 6.2 describes how to download and build Patmos and its tool chain.

For the installation you need a Java JDK. For Scala/Chisel compatibility reasons we recommend JDK 8.

6.1.1 Ubuntu

The following we describe how to setup an Ubuntu installation with the needed tools. This should work for the
latest Ubuntu distribution.

We can now install all the needed tools:

sudo apt install git openjdk-8-jdk gitk cmake make g++ texinfo flex bison \
subversion libelf-dev graphviz libboost-dev libboost-program-options-dev ruby-full \
liblpsolve55-dev zlib1g-dev gtkwave gtkterm scala autoconf libfl2 expect verilator curl

Make sure to use Java 8 or a later version.
As Patmos uses Chisel as its hardware language, which is built on top of Scala, we need install sbt according to

the instructions from https://www.scala-sbt.org/download.html or https://www.scala-sbt.org/1.x/
docs/Installing-sbt-on-Linux.html

For the Quartus setup it is best to change the default shell to /bin/bash:

sudo rm /bin/sh
sudo ln -s /bin/bash /bin/sh

For building the Patmos documentation (e.g., the handbook) you need to install a full version of LaTeX (about
3 GB) with:

sudo apt-get install texlive-full doxygen

6.1.2 Mac OS X

This subsection describes the installation of needed tools and libraries on Mac OS X. It is based on a OS X
Yosemite and assumes to use homebrew1 for package management.

First install the Mac compiler (Xcode) and the command line tools.
For the build of Patmos and the compiler we need to install:

brew install cmake boost libelf sbt doxygen expect

For WCET analysis install

1http://brew.sh/

65

http://patmos.compute.dtu.dk/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Linux.html
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Linux.html
http://brew.sh/

6 Build Instructions

brew install lp_solve

For wave viewing install GTKWave with

brew install homebrew/x11/gtkwave

Several tools are needed, best installed with brew. For Patmos simulator and assembler: boost, libelf.

6.1.3 Windows 10

The Patmos tool chain doesn’t build nor run directly on Windows. However, through the use of the Windows
Subsystem for Linux (WSL), we can work with Patmos in Windows through an Ubuntu terminal. An installa-
tion guide for the WSL is given here: https://docs.microsoft.com/en-us/windows/wsl/install-win10.
Chose the Ubuntu distribution from the Microsoft Store. From now on, all commands given should be run through
the Ubuntu terminal and not the windows command line.

Start by copying your Git public and private keys to Ubuntu (where username is you windows account username):

$ cp -r /mnt/c/Users/username/.ssh /home/user/

Notice how the Windows C: drive can be accesses from the Ubuntu terminal as /mnt/c/. To ensure Git accepts
the private key, we need to restrict access to it (here we assume the private key is named id_rsa):

$ chmod 600 ~/.ssh/id_rsa

The rest of the setup can be done using the same steps as given in section 6.1.1. Generally, interaction with
Patmos should be done through the Ubuntu terminal as if the machine was actually running Ubuntu. The only
exception is any tool that uses a graphical UI, which requires some additional setup to support.

6.2 Building Patmos and the Compiler Tool Chain

We assume that the T-CREST project will live in $HOME/t-crest. Before building Patmos, add the Patmos tool
chain binaries to your path (e.g., in your .bashrc or .profile):2

$ echo "export PATH=\$PATH:\$HOME/t-crest/local/bin" >> ~/.profile

A complete logout from Ubuntu might be needed to take effect (just closing a terminal window is not enough,
depending on how you set up your profile files).

Patmos and the compiler can be checked out from GitHub and built as follows:

$ mkdir ~/t-crest
$ cd ~/t-crest
$ git clone https://github.com/t-crest/patmos-misc.git misc
$./misc/build.sh

For developers with push permission, generate an ssh key and upload it at GitHub (see https://help.github.
com/articles/connecting-to-github-with-ssh/ for detailed instructions). The ssh based clone string for
write access is then:

$ git clone git@github.com:t-crest/patmos-misc.git misc
$./misc/build.sh

This script (build.sh) will checkout several other repositories (the compiler, library, and the Patmos source)
and builds the compiler and the Patmos simulator. Therefore, take a cup of coffee and find some nice reading.

Hint: The build script isn’t optimized for multiple cores. Some parts of the Patmos tool chain – Like the compiler
– are very well suited for running on multiple cores. To the build process, the script can be interrupted at any time
to manually enable multi-core building. E.g. to speed-up LLVM’s build (which takes up a large part of the build
script, interrupt the script when it begin building LLVM, navigate to ~/t-crest/llvm/build and run:

2The path needs to be absolute. LLVM cannot handle a path relative to the home folder ~, e.g., ~/t-crest/local/bin.

66

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/

6.3 Quartus on Linux

$ make -j

When the LLVM build is done, the build script can be rerun, and it will continue where it left off (without
needing to build the compiler).

You can test your installation by checking if the compiler is available:

$ patmos-clang --version

The build.sh script contains default options, which should work out of the box. The build settings can be
changed by a customized misc/build.cfg file. The file misc/build.cfg.dist is an example configuration file
containing default values. It is ignored by the build process and should not be edited.3 To change any options
for misc/build.sh, either start with an empty misc/build.cfg or copy misc/build.cfg.dist and modify the
values to your need.

For correct signing of your changes set the username and email in git with:

$ git config --global user.name "Joe Someone"
$ git config --global user.email "joe.someone@domain.com"

Optionally, you may additionally add the misc checkout to your path, so that build.sh and the helper tools in
misc can be executed from everywhere.

$ export PATH=$PATH:$HOME/t-crest/misc

The Patmos documentation (handbook, C library, Argo NoC) can be built with:

$ cd patmos/doc
$ make

6.3 Quartus on Linux

Download the free Prime Lite edition of Quartus from Intel official website using the link below.4 All currently-
available versions of Quartus Prime Lite (17 to 22) support Cyclone IV with which DE2-115 is equipped. However,
for DE2-70 boards containing Cyclone II you need to install Quartus web which only versions 13 and 13.1
are available to download currently and needs 32-bit compatibility libraries on 64-bit Linux distributions to be
installed.5

https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html

Then decompress downloaded file using following command:

tar xvf Quartus-lite-xxx-linux.tar

The software installation is started with:

bash setup.sh

Then add the bin directory of Quartus to your $PATH.
For access to the serial port the user needs access rights.

Add user to dialout group for the serial port access
sudo usermod -a -G dialout user

3It is autogenerated by build.sh -e from the values in build.sh.
4For a complete tutorial about installing Quartus follow this link: https://cdrdv2-public.intel.com/666293/quartus_

install-683472-666293.pdf
5For more information about compatibility issues follow this link: https://www.intel.com/content/www/us/en/support/
programmable/support-resources/design-software/devices-support.html

67

https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html
https://cdrdv2-public.intel.com/666293/quartus_install-683472-666293.pdf
https://cdrdv2-public.intel.com/666293/quartus_install-683472-666293.pdf
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/devices-support.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/devices-support.html

6 Build Instructions

Logout and login again to update the group settings.
Getting the Altera USB Blaster working on Ubuntu is a little bit brittle. Here a collection of tips collected from

different places that helped me to get the USB Blaster running.
The USB devices can be listed with

lsusb

Add permissions to access the Altera USB Blaster by creating or editing /etc/udev/rules.d/51-usbblaster.rules:

For Altera USB-Blaster permissions.
SUBSYSTEM=="usb",\
ENV{DEVTYPE}=="usb_device",\
ATTR{idVendor}=="09fb",\
ATTR{idProduct}=="6001",\
MODE="0666",\
NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}",\
RUN+="/bin/chmod 0666 %c"

For the DE10 Nano board following rules are needed:

SUBSYSTEM=="usb",\
ENV{DEVTYPE}=="usb_device",\
ATTR{idVendor}=="09fb",\
ATTR{idProduct}=="6810",\
MODE="0666",\
NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}",\
RUN+="/bin/chmod 0666 %c"

Reload the rules:

sudo udevadm control --reload

Test the JTAG chain with:

jtagconfig

and hope for an output similar to:

1) USB-Blaster [2-2.2]
020F70DD EP3C120/EP4CE115

In some cases, killing the the jtagd process can make the connection work again:

$ sudo killall -9 jtagd
$ sudo killall -9 jtagd # Verify that is not running
jtagd: no process found
$ jtagconfig

Following link is needed under Ubuntu 20.04

sudo ln -s /lib/x86_64-linux-gnu/libudev.so.1 /usr/lib/libudev.so.0

More debugging commands:

jtagd --foreground --debug

jtagconfig -d

After fixing the permissions for the USB Blaster open Quartus and test if the cable is found with the programmer.
Select USB-Blaster in Hardware Setup. When connected to an FPGA test the USB-Blaster with Auto Detect (With
the DE2-115, a question about shared JTAG ID pops up – select EP4CE115).

68

6.4 The Xilinx ML605 Platform

6.4 The Xilinx ML605 Platform

For the evaluation within the T-CREST project the Xilinx ML605 FPGA board was chosen as the ‘standard’
evaluation platform. The T-CREST platform contains, besides several Patmos’ connected with the Argo NoC, a
memory tree, called BlueTree, from UoY and the time-predictable memory controller from TU/e. As the building
this platform needs some non-free tools and including closed source code, we provide prebuilt configurations of
the T-CREST platform as bit files available for download:

• A 4 core version: http://patmos.compute.dtu.dk/t-crest-4core.bit

• A 16 core version:

To configure the FPGA use the IMPACT software from Xilinx (command impact), which is part of the Xilinx
ISE package and needs no license (It is also available in a smaller Lab package). To compile an application and
download it to the ML605 follow the exact same steps as for the Altera CMP version, e.g., from within the patmos
directory:

make APP=hello_puts comp download

6.4.1 Getting the Xilinx Configuration Cable to Work

Xilinx does not support Ubuntu (at least the last few versions) directly. The following description is a summary of
the help from Jamie.

Copy some Xilinx cable specific files to /usr/share with:

sudo cp /opt/Xilinx/14.7/ISE_DS/ISE/bin/lin/install_script/install_drivers/\
linux_drivers/pcusb/*.hex /usr/share

Ensure that fxload is installed with:

sudo apt-get install fxload

Create /etc/udev/rules.d/80-xusbdfw.rules with following content:

version 0003
ATTR{idVendor}=="03fd", ATTR{idProduct}=="0008", MODE="666"
SUBSYSTEM=="usb", ACTION=="add", ATTR{idVendor}=="03fd", ATTR{idProduct}=="0007", RUN+="/sbin/fxload -v -t fx2 -I /usr/share/xusbdfwu.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTR{idVendor}=="03fd", ATTR{idProduct}=="0009", RUN+="/sbin/fxload -v -t fx2 -I /usr/share/xusb_xup.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTR{idVendor}=="03fd", ATTR{idProduct}=="000d", RUN+="/sbin/fxload -v -t fx2 -I /usr/share/xusb_emb.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTR{idVendor}=="03fd", ATTR{idProduct}=="000f", RUN+="/sbin/fxload -v -t fx2 -I /usr/share/xusb_xlp.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTR{idVendor}=="03fd", ATTR{idProduct}=="0013", RUN+="/sbin/fxload -v -t fx2 -I /usr/share/xusb_xp2.hex -D $tempnode"
SUBSYSTEM=="usb", ACTION=="add", ATTR{idVendor}=="03fd", ATTR{idProduct}=="0015", RUN+="/sbin/fxload -v -t fx2 -I /usr/share/xusb_xse.hex -D $tempnode"

Restart the udev service with:

sudo udevadm control --reload-rules

Make sure that libusb is installed (e.g., in /lib/i386-linux-gnu on a 32-bit Ubuntu) and make a symbolic
link with

sudo ln -s libusb-1.0.so.0 libusb.so
sudo ln -s /lib/x86_64-linux-gnu/libudev.so.1 /usr/lib/libudev.so.0
sudo ln -s /lib/x86_64-linux-gnu/libudev.so.1 /lib/x86_64-linux-gnu/libudev.so.0

Restart your machine and connect the USB cable again.

69

http://patmos.compute.dtu.dk/t-crest-4core.bit

6 Build Instructions

Using iMPACT Start impact from a terminal with

impact

Impact pops up some dialog boxes:
Do you want iMPACT to automatically load the last saved project for you? – answer with No.
Do you want the system to automatically create and save a project file for you? – answer Yes.
Next window click Ok. iMPACT should detect the JTAG chain with two devices. Answer the following dialog

boxes wit No and Cancel.
Right-click on the xc6vlx240t device and select Assign New Configuration File and select the provided .bit file

(e.g., t-crest-4core.bit). Answer the following question about attached Flash PROMs with No.
Right-click again on the FPGA symbol and select Program. Select Ok on the next dialog box and the FPGA

shall be configured.
Then compile and download an application as described above.

Installing the Xilinx Tools After extracting the tools with tar the install procedure is started within the Xilinx_*
directory with:

sudo ./xsetup

Starting Xilinx ISE In some setups it is needed to source a setup script, e.g.:

source /opt/Xilinx/14.7/ISE_DS/settings64.sh

Then ISE can be started with ise.

6.4.2 Updating the Patmos Cores with Aegean

The correct Verilog file for the two version of Patmos (core 0 that downloads an application and the other cores) is
built with the Aegean tool. The 4 cores version is built with:

make platform AEGEAN_PLATFORM=ml605_4core

A 16 core version is available as well. The generated Verilog files are the same, but the schedule for the Argo
NoC is different (which is copied to t-crest/patmos/c/nocinit.c).

All generated file can be cleaned with make cleanall.
The configuration of T-CREST with Bluetree and the TU/e memory controller is available via a .tgz file,

exchanged via email to protect IP rights. Therefore, they are not integrated in Aegean and some manual code
copying is needed. The ml605.tgz shall be extracted within the t-crest directory. Copy the Patmos Verilog files
(ml605mPatmosCore.v and ml605mPatmosCore.v) from the build directory (t-crest/aegean/build/ml605_4core)
into t-crest/ml605.

6.5 Testing

Patmos base functionality can be tested by comparing the execution of the simulator with the execution of the
emulator. TODO: Write more on how it works. Somewhere we should also talk about the two different ways to
build Patmos: within the patmos repro and with build.sh where the emulator gets installed. Within the patmos
folder execute:

make test

More testing can be performed with the programs included in the benchmark repository. This repository is not
included in the default checkout and build. Therefore, within the folder t-crest execute

misc/build.sh -t bench

to checkout the benchmarks, compile them, and execute them. Building Patmos via the build script also ensures
that the correct emulator is used. Be aware that this is a very lengthy task; it takes on a MacBook Pro more than 3
hours.

70

6.6 ModelSim License

Regression Tests: Two simple scripts are available in misc that do a clean checkout of T-CREST, including the
benchmarks, and performing a build and tests: regtest-init.sh and regtest.sh. regtest-init.sh starts the
build process with checking out misc and therefore needs to be copied out of the repository to a place for scripts.
The regression test will send out result emails to all listed in recipients.txt.

6.6 ModelSim License

In the case that you have a DTU Compute login you can access the license servers from outside the DTU network
by setting up an SSH tunnel. An example of how such a tunnel can be set up follows, you need to insert you own
username.

ssh -L 1717:angel2:1717 -L 1718:angel2:1718 ${USERNAME}@sshlogin.compute.dtu.dk

When the SSH tunnel is setup the LM_LICENSE_FILE needs to be set to:

LM_LICENSE_FILE=1717@localhost

This way of setting up an SSH tunnel might also work for other institutions.

License settings for ModelSim and Xilinx

export LM_LICENSE_FILE=1717@angel1:1717@angel2:1717@angel3
export XILINXD_LICENSE_FILE="2100@eda1.imm.dtu.dk"

71

6 Build Instructions

72

7 Tools

Along with Patmos come several tools; this chapter describes these tools and how to use them.

7.1 Simulation, Emulation, and Execution

7.1.1 pasim

The Patmos simulator pasim provides a high-level simulation of Patmos. It is useful for quick evaluations of
different hardware configurations and for debugging applications. As it can provide detailed reports about the
application behavior, it is particularly useful during the initial phases of application development.

Usage The general usage of pasim is pasim <file>, where <file> may be a plain binary or an ELF file.
Tables 7.1, 7.2, 7.3, and 7.4 show the various options of the simulator. For memory/cache sizes the following units
are allowed: k, m, g, or kb, mb, gb.

7.1.2 Patmos Emulator

The tool patemu provides a C++-based simulator that is derived from the actual hardware description. While it is
slower and less flexible than pasim, its behavior is identical to the behavior of actual hardware. It is therefore useful
for investigating cases where the behavior of the simulator diverges from the behavior in the FPGA. The emulator
can also generate wave form traces, which allow the investigation on a level similar to Verilog/VHDL-based
simulations.

Usage The general usage is patemu [<file>]. When invoked without argument, patemu executes the code in
the boot ROM of the processor. When given an ELF file as argument, the emulator loads the file and executes it
directly. Table 7.5 shows the command-line options for the emulator.

Table 7.1: General options for pasim

Option Description

-h [--help] produce help message
-c [--maxc] arg stop simulation after the given number of cycles (default: infinity)
-b [--binary] arg binary or elf-executable file (stdin: -)
--debug [=arg] enable step-by-step debug tracing after cycle, default: 0
--debug-fmt arg format of the debug trace (short, trace, instr, blocks, calls,

calls-indent, default, long, all)
--debug-file arg output debug trace in file (stdout: -, default: stderr)
--debug-intrs print out all status changes of the exception unit.
--debug-nopc do not print PC and cycles counter in debug output
-o [--stats-out] arg write statistics to a file (stdout: -, default: stderr)
--print-stats arg print statistics for a given function only.
--flush-caches arg flush all caches when reaching the given address (can be a symbol

name).
-V [--full] full statistics output
-v [--verbose] enable short statistics output

73

7 Tools

Table 7.2: Memory Options for pasim

Option Default Description

-g [--gsize] arg 64m global memory size in bytes
-G [--gtime] arg 7 global memory transfer time per burst in cycles
-t [--tdelay] arg 0 read delay to global memory per request in cycles
--trefresh arg 0 refresh cycles per TDM round
--bsize arg 16 burst size (and alignment) of the memory system.
--psize arg 0 Memory page size. Enables variable burst lengths for single-core.
-p [--posted] arg 0 Enable posted writes (sets max queue size)
-l [--lsize] arg 2k local memory size in bytes
--mem-rand arg 0 Initialize memories with random data
--chkreads arg none Check for reads of uninitialized data, either per byte (warn, err) or

per access (warn-addr, err-addr). Disables the data cache.
--with-mmu arg 0 Simulate memory management unit

Table 7.3: Cache options for pasim

Option Default Description

-d [--dcsize] arg 2k data cache size in bytes
-D [--dckind] arg lru2 kind of direct mapped/fully-/set-associative data cache (ideal, no,

dm, lru[N], fifo[N])
--dlsize arg 0 size of a data cache line in bytes, defaults to burst size if set to 0
-s [--scsize] arg 2k stack cache size in bytes
-S [--sckind] arg block kind of stack cache (ideal, block, lblock, dcache)
-C [--icache] arg mcache kind of instruction cache (mcache, icache)
-K [--ickind] arg lru2 kind of direct mapped/fully-/set-associative I-cache (ideal, no, dm,

lru[N], fifo[N]
--ilsize arg 0 size of an I-cache line in bytes, defaults to burst size if set to 0
-m [--mcsize] arg 2k method cache / instruction cache size in bytes
-M [--mckind] arg fifo kind of method cache (ideal, lru, fifo)
--mcmethods arg 16 Maximum number of methods in the method cache, defaults to num-

ber of blocks if zero
--mbsize arg 8 method cache block size in bytes, defaults to burst size if zero

7.1.3 config_altera

The script config_altera configures an Altera FPGA using the tool quartus_pgm provided by Altera.

Usage The usage of the script is config_altera [-b <blaster>] [-h] <file>. The option -h prints a basic
help. The option -b specifies the blaster type for FPGA configuration; by default, the blaster type is USB-Blaster.
The argument <file> specifies a .sof file with the bit stream for FPGA configuration.

7.1.4 config_xilinx

The script config_xilinx configures a Xilinx FPGA using the tool impact provided by Xilinx.

Usage The usage of the script is config_xilinx [-h] <file>. The option -h prints a basic help. The
argument <file> specifies a .bit file with the bit stream for FPGA configuration.

74

7.1 Simulation, Emulation, and Execution

Table 7.4: Simulator options for pasim

Option Default Description

--cpuid arg 0 Set CPU ID in the simulator
-N [--cores] arg 1 Set number of CPUs (enables memory TDM)
--freq arg 80 Set CPU Frequency in Mhz
--interrupt arg 1 enable or disable interrupts
--mmbase arg 0xf0000000 base address of the IO device map address range
--mmhigh arg 0xffffffff highest address of the IO device map address range
--cpuinfo_offset arg 0x00000 offset where the cpuinfo device is mapped
--excunit_offset arg 0x10000 offset where the exception unit is mapped
--timer_offset arg 0x20000 offset where the timer device is mapped
--uart_offset arg 0x80000 offset where the UART device is mapped
--led_offset arg 0x90000 offset where the LED device is mapped
--ethmac_offset arg 0xb0000 offset where the EthMac device is mapped
--ethmac_ip_addr arg Provide virtual network interface with the given IP address
-I [--in] arg - input file for UART simulation (stdin: -)
-O [--out] arg - output file for UART simulation (stdout: -)

Table 7.5: Options for patemu

Option Description

-e <addr> Provide virtual network interface with IP address <addr>
-h Print help
-i Initialize memory with random values
-k Simulate random input from keys
-l <N> Stop after <N> cycles
-p Print method cache statistics
-r Print register values in each cycle
-s Trace stack cache spilling/filling
-v Dump wave forms file Patmos.vcd
-I <file> Read input for UART from file <file> (stdin: -, default: stdin)
-O <file> Write output from UART to file <file> (stdout: -, default: stdout)

7.1.5 patserdow

The tool patserdow downloads an ELF file via a serial line to the FPGA and forwards output to and from the
downloaded application. The download protocol uses CRC checksums to verify the integrity of the downloaded
data. The patserdow tool terminates when the application on the FPGA terminates, with the same exit code as the
application.

Usage The general usage is patserdow [-v] [-t <time>] [-h] <port> <file>. The option -h prints a
basic help. The option -v turns on a verbose mode, where information about the file to be downloaded and the
progress of the downloading process is printed to stderr. The option -t specifies a time out after which execution
is terminated. Output from the application is written to stdout; input to the application is read from stdin. The
argument <port> specifies the serial port to be used for downloading. The argument <file> specifies the ELF file
to be downloaded.

75

7 Tools

7.1.6 patex

The tool patex combines FPGA configuration and application download such that ELF files can be executed on
the FPGA without manual intervention. It can therefore act as a drop-in replacement for pasim and patemu. As
patex executes the application on actual hardware, it is particularly useful for applications where simulation or
emulation would be prohibitively slow.

Usage The general usage is patex [-I <file>] [-O <file] <file>. The argument for the option -I
specifies where input to the UART should be read from. The argument for the option -O specifies where UART
ouput should be written to.

The environment variable PATEX_CONFIG determines how the FPGA is configured. Permissible values are: Make
(the default value), Altera, or Xilinx.

• Make means that the FPGA is configured by calling make config in the directory specified in environment
variable PATMOS_HOME. When this variable is unset, patex uses the directory where it was installed from.

• Altera means that the FPGA is configured by calling config_altera with the file specified in environment
variable PATEX_CONFIGFILE. If the environment variable BLASTER_TYPE is set, it is used as the blaster type.

• Xilinx means that the FPGA is configured by calling config_xilinx with the file specified in environment
variable PATEX_CONFIGFILE.

patex recognizes URLs for PATEX_CONFIGFILE and downloads the file using wget if necessary. The protocols
http, https, and ftp are supported.

The environment variable COM_PORT sets the serial port for downloading. When this variable is unset, patex
uses the COM_PORT variable from the Makefile at the time of installation. The environment variable TIMEOUT
sets a timeout in seconds. By default, patex terminates download and execution after 300 seconds. Setting the
environment variable VERBOSE to true turns on verbose output.

7.2 Patmos Developer Tools

This section describes tools that are useful when working on Patmos itself, but are of little interest when developing
applications.

7.2.1 elf2bin

The elf2bin tool converts ELF files to binary files.

Usage The elf2bin tool has two modes. In default mode, its usage is elf2bin [-d <disp>] <infile>
<outfile1> <outfile2> and it dumps executable segments to file <outfile1> and other segments to <outfile2>.
If option -d is provided, it uses a displacement of <disp> for the non-executable segments, such that data that is
mapped to address <N> is dumped to position <N>-<disp> in the output file.

The second mode of elf2bin is a “flat” mode, with the usage elf2bin -f <infile> <outfile>. In that
mode, elf2bin generates a flat output file, without any displacement. This file can be post-processed (e.g.,
with hexdump -v -e ’"%d,"’ -e ’" // %08x\n"’) to generate a representation of the data for Verilog/VHDL-
based simulations of external memory.

7.2.2 pacheck

The tool pacheck performs a “sanity” check of binaries and ELF files. While not being complete, it detects
common errors such as control-flow instruction inside branch delay slots.

Usage The usage of pacheck is pacheck [-h|--help] [-v|--verbose] [[-b|--binary] <input>]. The
option -h prints a help message. The option -v makes pacheck verbose. By default, pacheck reads from stdin; a
file for checking can be given either as command-line argument or as argument to the option -.

76

7.2 Patmos Developer Tools

7.2.3 paasm

The Patmos assembler paasm provides a basic assembler. It generates binary files and should be used only for
writing very basic tests of Patmos. For developing applications in assembly, please use the assembler provided by
the compiler, which is more complete and in particular supports the generation of ELF files.

Usage The usage of paasm is paasm <input> <output>.

7.2.4 padasm

The Patmos disassembler padasm is the counterpart of paasm, and similar restrictions apply. For general develop-
ment, please use the patmos-llvm-objdump tool provided by the compiler.

Usage The usage of padasm is padasm <input> <output>.

77

7 Tools

78

8 The Patmos Compiler

The Patmos compiler is an adaptation of the LLVM compiler [7] to target the Patmos processor ISA and to provide
a tighter integration with WCET analysis [10].

The compilation tool chain consists of the following components:

• patmos-llvm The compiler, including platin and various compiler tools, objdump and an assembler
(patmos-llvm-mc).

• patmos-clang The C frontend and the compiler/linker driver. Compiled together with patmos-llvm.

• patmos-gold The patmos-ld ELF linker for Patmos.

• patmos-compiler-rt The runtime library, defining software implementations of div and floats.

• patmos-newlib The C library implementation.

• patmos-benchmarks Various benchmarks that have been adapted to Patmos.

• patmos-misc A collection of helper scripts for debugging, evaluation and building.

• patmos The processor and the simulator.

The compiler and libraries can be built using misc/build.sh as described in Section 6.2. Details on building
the tool chain manually without the build script can be found in the README.patmos files provided in the various
repositories.

8.1 Overview

Figure 8.1 gives an overview of the compiler tool chain. The compilation process starts with the translation of each
C source file and libraries to the LLVM intermediate language (bitcode) by the C frontend clang. At this level, the
user application code and static standard and support libraries are linked by the llvm-link tool. An advantage of
linking on bitcode level is that subsequent analysis and optimisation passes, and the code generation backend have
a complete view of the whole program. The opt optimiser performs generic, target independent optimisations,
such as common sub-expression elimination, constant propagation, etc.

The llc tool constitutes the backend, translating LLVM bitcode into machine code for the Patmos ISA, and
addressing the target-specific features for time predictability. The backend produces a relocatable ELF binary
containing symbolic address information, which is processed by gold1, defining the final data and memory layout,
and resolving symbol relocations.

In addition to the machine code, the backend exports supplementary information for WCET analysis and
optimisation purposes in form of a Patmos Metainfo File. This information contains, among others, flow information
(in form of loop bounds provided by symbolic analysis on bitcode level), structural information (targets of indirect
branches), and information on memory accesses (memory areas accessed by individual load/store instructions).
This information can be further processed by the platin toolkit, by enhancing it (e.g., by a hardware model),
translating it (e.g., to the input format for annotations of the timing analysis tool aiT, as used in the T-CREST
project), or performing other analyses on it.

8.2 Compiling with the patmos-clang Driver

This section describes the usage of the patmos-clang C compiler.
1gold is part of the GNU binutils, see http://sourceware.org/binutils/

79

http://sourceware.org/binutils/

8 The Patmos Compiler

Figure 8.1: Compiler Tool Chain Overview

8.2.1 Compiling and Linking C Programs

C source files are by default compiled to bitcode objects (patmos-clang -c). To compile .c files to ELF objects,
use patmos-clang -c -fpatmos-emit-reloc.

Assembly files are always compiled to ELF objects. Archive files (.a) can only contain bitcode objects or ELF
objects, not a mixture of both. Shared libraries (either bitcode or ELF) are not supported.

It is possible to link multiple bitcode files into a single bitcode file and link it like a static library (compile with
patmos-clang -fpatmos-link-object -o lib<name>.bc, link with -l<name>). Bitcode files are always fully
linked in, even if there is no usage of any of its symbols. Unused symbols are removed in a separate optimization
step.

Compiling single files to objects (using patmos-clang -c|-S)

1. Input .c files are compiled to bitcode files by default. Use -fpatmos-emit-obj to compile to ELF objects, or
-fpatmos-emit-asm to compile to assembly files.

2. Input .s files are compiled to ELF files.

Linking multiple files with patmos-clang (i.e, not using -c or -S) The compiler driver (patmos-clang) performs
the following steps to compile and link multiple input files.

1. All .c input files are compiled to individual bitcode objects. All assembly files are compiled to individual
ELF files.

2. If -nostartfiles is not given and the target OS is not RTEMS, crt0 is added as first input file.

3. Depending on the -nodefaultlibs|-noruntimelibs|.. options, the following libraries are added after all user
provided inputs: -lc (libc), -lpatmos (libgloss), -lrtsf (softfloats), -lrt (runtime).

80

8.2 Compiling with the patmos-clang Driver

4. For any of the above libraries, as well as -lm (libm), a lib<libname>syms.o file is added if the library is a
bitcode library. The lib<x>syms.o files force the linker to pull in functions for which calls might be generated
by LLC when compiling from bitcode to ELF.

5. All input files and libraries are checked if they are bitcode files/archives or ELF files/archives. All bitcode
files are linked into a single bitcode file. ELF files are ignored in this step.

Attention: This means that symbols that are defined in bitcode archives but are used only in ELF input files
are not linked in! You need to link in a separate bitcode file containing a pseudo use of the required symbols.

6. The resulting bitcode file is optimized and compiled to relocatable ELF.

Attention: The optimization step removes any symbol from the bitcode that are not used in bitcode. If a
function is called only in an ELF object, you need to mark the function with __attribute__((used)).

7. The ELF file is linked with the other ELF files and ELF libraries at the position of the first bitcode input file.
Relocations are resolved and additional symbols are defined. The result is an executable ELF file.

Attention: Since bitcode inputs are linked first in a separate step, the linking order between bitcode files and
ELF inputs is not (yet) fully preserved. Using -flto does not solve this, since the LTO plugin also links all
bitcode files first, and only links in the linked bitcode file *after* all ELF inputs!

Driver Options

The patmos-clang driver can be used to generate bitcode files, to link bitcode files, or to emit assembler code.
The driver supports the following modes of operation:

patmos-clang -c <inputs>
Input: .c C source file
Output: .o or .bc bitcode files
Actions: compile each input file to a bitcode file

patmos-clang -S <inputs>
Input: .c C source file
Output: .s or .ll human readable bitcode files
Actions: compile each input file to a human readable bitcode file

patmos-clang -fpatmos-emit-llvm <inputs>
Input: .c C source file, .bc bitcode object file, .a bitcode files archive
Output: bitcode file
Actions: compile to bitcode, link all input files, link with standard libraries and start code

patmos-clang -fpatmos-emit-reloc -c <inputs>
Input: .c C source file
Output: .o Patmos relocatable ELF
Actions: compile each input file to a Patmos relocatable ELF file

patmos-clang -fpatmos-emit-asm -S <inputs>
Input: .c C source file
Output: .s Patmos assembly file
Actions: compile each input file to a Patmos assembly file

patmos-clang -fpatmos-emit-reloc <inputs>
Input: .c C source file, .bc bitcode object file, .a bitcode files archive
Output: .o Patmos relocatable ELF
Actions: compile to bitcode, link all input files, link with standard libraries and start code,

compile to relocatable ELF

81

8 The Patmos Compiler

Option Description
-mfloat-abi=none Do not use software floating point libraries when linking
-nostdlib Do not use standard libraries such as libc when linking
-nolibc Do not use libc when linking
-nodefaultlibs Do not use platform system libraries when linking
-nostartfiles Do not use the crt0 start file when linking
-nolibsyms Do not use symbol definition files for runtime libraries when

linking. Those files prevent the linker from removing any
functions for which calls might be generated by the compiler
backend, such as software division or memcpy

-fpatmos-link-object Link as object, i.e., do not link in any libraries or start code

Table 8.1: Options for patmos-clang that control the default behaviour of the linker

patmos-clang -fpatmos-emit-asm <inputs>
Input: .c C source file, .bc bitcode object file, .a bitcode files archive
Output: .o Patmos assembly file
Actions: compile to bitcode, link all input files, link with standard libraries and start code,

compile to Patmos assembly

patmos-clang -o <output> <inputs>
Input: .c C source file, .bc bitcode object file, .a bitcode files archive
Output: Patmos executable ELF
Actions: compile to bitcode, link with standard libraries and start code,

compile to relocatable ELF, create Patmos executable ELF

The compiler accepts standard options such as -I, -L and -l to define additional lookup paths for header files
and libraries and to link with (static) libraries. The behaviour of the linker can be controlled with additional
options for patmos-clang as shown in Table 8.1. Refer to patmos-clang -help-hidden for a list of all available
options that control the behaviour of the driver, and to patmos-llc -help-hidden for all options that control the
generation of machine code from bitcode. Options can be passed from patmos-clang to patmos-llc and other
tools using -Xclang, -Xopt, -Xllc, -Wl and so on. To pass options to the internal LLVM backend of the clang
compiler, use patmos-clang -Xclang -mllvm -Xclang <option>.

Libraries

The Patmos tool chain supports static libraries. Libraries are archives that contain either only bitcode files or ELF
objects. The archives are created by using either the ar tool provided by the host system or by using patmos-ar
from the patmos-gold binutils. The tool patmos-llvm-nm can be used to inspect the content of bitcode archives.

ar q libtest.a *.bc
show the contents of libtest.a
patmos-llvm-nm libtest.a
compile and link with the created library
patmos-clang -target patmos-unknown-elf -o app main.c -ltest

8.2.2 Disassembling

To disassemble .bc files, use patmos-llvm-dis <file>.bc.
To disassemble .o ELF files, use patmos-llvm-objdump -d <file>. Add ’-r’ to show relocation symbols (for

relocatable ELFs or executables generated with -Xgold -q).

8.2.3 Debugging

Some useful commands for debugging:

82

8.3 platin – The Portable LLVM Annotation and Timing Toolkit

print out executed instructions and the values of their operands
starting from some cycle
pasim --debug=<cycle-to-start-printing> --debug-fmt=instr <binary>

show disassembly of binary
patmos-llvm-objdump -r -d <binary> | less

compile with debug infos, show source line numbers
patmos-clang -g -o <binary> ...
readelf --debug-dump=decodedline <binary>

Compile with debugging info: use CFLAGS="-g" for your application, and add
the following to your build.cfg:

NEWLIB_TARGET_CFLAGS="-g"
COMPILER_RT_CFLAGS="-g"

Annotate objdump with source line numbes (this is quite slow at the moment)
patmos-llvm-objdump -r -d <binary> | patmos-dwarfdump <binary> | less

Annotate simulation trace and stack-trace with line numbers
pasim --debug=<cycle-to-start-printing> --debug-fmt=instr <binary> 2>log.txt
cat log.txt | patmos-dwarfdump <binary>

8.2.4 Various options

Keep relocation infos in executable for objdump: (does not work with patmos-clang -g !)

patmos-clang -Xgold -q -o <binary>
patmos-llvm-objdump -r -d <binary> | less

8.3 platin – The Portable LLVM Annotation and Timing Toolkit

The platin toolkit provides a set of useful tools to process the information exported by the compiler in the PML
format, with respect to timing analysis integration.

The usage of platin is:

platin <tool> <tool-options>

You can get help on a particular tool with either of

platin <tool> --help
platin help <tool>

Below we present a list of the most useful tools.

pml2ais
Translates information of a PML file relevant to timing analysis to the AIS annotation format.

extract-symbols
The compiler exports program information at a stage where the final memory layout is not yet defined.
This tool reads the final executable and enhances the PML file with information on the final addresses of
instructions and data.

83

8 The Patmos Compiler

analyze-trace
Based on the structural information of a program in the PML file, the trace analysis tool is capable of
extracting flow fact hypotheses based on a simulation run. These are context-sensitive and include, e.g.
observed loop bounds and function call targets.

transform
Transforms flow facts from bitcode to machine code level or simplifies a set of flow facts.

tool-config
Given a hardware model (in PML format), this tool outputs consistent hardware configuration options/pa-
rameters for use during compilation, simulation and WCET analysis.

pml-config
Create and modify a hardware model in PML format based either on the default configuration for a given
target triple or on an existing PML hardware model.

pml
Provides validation, inspection and merge facilities for PML files.

visualize
Visualises structural information of the program in the different program representations.

wcet
A driver that starts WCET analysis from the command line.

In addition to the platin tools, another command-line utility, patmos-clang-wcet, is provided. This tool invokes
the compiler (patmos-clang), timing analysis, and the compiler a second time (with intermediate calls to platin
tools as necessary) for WCET-guided optimisations based on timing-analysis feedback.

8.3.1 The PML File Format

platin stores all internal information and configuration in Platin Metainformation Language (PML) files. PML
files are YAML files that adhere to the PML schema. The schema file can be found in

llvm/tools/platin/lib/core/pml.yml

Many platin tools accept multiple PML input files. Multiple PML files can also be merged using the pml tool.

8.3.2 PML Architecture- and Tool Configuration

PML configuration files are used to set up tools such as the pasim or the clang compiler via the tool-config
tool, and provides timing and cache information to the WCET analyses.

Typically, the configuration is stored in a separate PML file that is passed to the platin tools as additional input
file using the -i option. Sample configuration files can be found in

llvm/tools/platin/etc/patmos

TODO: Martin is unhappy about those two examples: the ait version represents memory timing non of our
platforms fulfills, the other version is for the depreciated DE2-70 and the timing info is for a page mode that we
never used. Furthermore, those two examples are not the base for generation of a .pml file. Where do the defaults
come from? If no one minds, I would like to delete those two.

There are three configuration sections:

• machine-configuration: The machine configuration defines memory size and timings, caches and mem-
ory areas. If no machine configuration is present, a default configuration will be used.

• tool-configurations: This section contains additional tool configurations and options.

• analysis-configurations: The analysis section sets up one or more WCET analyses. This section is
currently work in progress.

84

8.3 platin – The Portable LLVM Annotation and Timing Toolkit

The machine-configuration Section TODO: What is the meaning of 8 bytes for the method cache and 4 bytes
for the stack cache?

format: pml-0.1
triple: patmos-unknown-unknown-elf
machine-configuration:

memories:
- name: "main"
size: 0x200000
transfer-size: 16
read-latency: 0
read-transfer-time: 21
write-latency: 0
write-transfer-time: 21

- name: "local"
size: 2048
transfer-size: 4
read-latency: 0
read-transfer-time: 0
write-latency: 0
write-transfer-time: 0

caches:
- name: "data-cache"
block-size: 16
associativity: 1
size: 2048
policy: "lru"
type: "set-associative"

- name: "method-cache"
block-size: 8
associativity: 16
size: 4096
policy: "fifo"
type: "method-cache"

- name: "stack-cache"
block-size: 4
size: 2048
type: "stack-cache"

memory-areas:
- name: "code"
type: "code"
memory: "main"
cache: "method-cache"
address-range:

min: 0
max: 0x200000

- name: "data"
type: "data"
memory: "main"
cache: "data-cache"
address-range:

min: 0
max: 0x200000

85

8 The Patmos Compiler

attributes:
- key: "heap-end"
value: 0x100000

- key: "stack-base"
value: 0x200000

- key: "shadow-stack-base"
value: 0x1f8000

The machine configuration consists of three sections:

• memories: This section specifies the available memories and their timings. Each entry must define the
following properties of the memory:

– name: The (unique) name of the memory.

– size: The size of the memory in bytes. Can be a hexadecimal value.

– transfer-size: The size of a single beat in bytes. Also defines the alignment of the memory.

– min-burst-size: The minimum size of a single burst in bytes. Defaults to transfer-size.

– max-burst-size: The maximum size of a single burst in bytes. Defaults to min-burst-size.

– read-latency: The latency per read request in cycles.

– read-transfer-time: The number of cycles to read a single beat of size transfer-size.

– write-latency: The latency per write request in cycles.

– write-transfer-time: The number of cycles to write a single beat of size transfer-size.

The number of cycles for a single, max-burst-size-aligned read or write request of B bytes is

treq =

⌈
max(B,min-burst-size)

max-burst-size

⌉
·latency+

⌈
max(B,min-burst-size)

transfer-size

⌉
·transfer-time

For unaligned requests that span over a single burst, the transfer time can increase by up to latency+
transfer-time. TODO: Which component does an unaligned request? What is exactly a request?

The caches of Patmos exchange data with the main memory in bursts of constant size, which is a power
of 2. The time for this burst shall be configured with transfer-time and latency shall be set to 0. The
default configuration of Patmos is 4 32-bit word bursts. Therefore, the transfer-size is 16 bytes. On the
DE2-115 with the external 16-bit SRAM a burst transfer takes 21 clock cycles.

Ideal memory: A memory is ideal, if all latency and transfer time delays are set to zero.

Patmos: For a Patmos machine configuration, there must be exactly one memory named main. This
memory configuration is used to setup the global memory. If main does not exist, an ideal memory is
assumed.

The memory configuration named local is used to setup the local scratchpad memory. Currently, the
local memory must be an ideal memory.

All other memory configurations are ignored.

• caches: This section defines all caches of the core. Each entry must define the following properties:

– name: The (unique) name of the cache.

– type: The cache type. Supported values are none, set-associative, method-cache and stack-cache.
If set to none, the cache is disabled. This is equivalent to this cache’s section not being present.

86

8.3 platin – The Portable LLVM Annotation and Timing Toolkit

– policy: The replacement policy of the cache. Supported values are ideal, lru and fifo for a method
cache or a set-associative cache. For set-associative caches, the policy dm (direct mapped) is also
supported. For a stack cache, supported values are ideal, block, lblock, ablock and dcache. An
ideal cache will always hit. In particular, it does not have cold misses. In order to simulate an ideal
cache with cold misses, setup a very large fully associative cache (a very large direct mapped data
cache is ideal for the simulation, but not ideal for the analysis as it is not resilient against unknown
accesses).

– associativity: Defines the associativity of a lru or fifo set-associative cache, or the tag memory
size for a method cache. Ignored for all other types of caches.

– size: The size of the cache in bytes. Ignored for ideal caches.

– block-size: The size of a cache line for set-associative caches, or the internal alignment of cache
blocks for stack caches and method caches, in bytes. A block size of 4 (or less) corresponds to
a variable-sized method cache. A block size of size/associativity corresponds to a fixed-size
method cache. For set-associative caches, the block size will typically be the same as the underlying
memory transfer size.

At the moment, the block-size is always required to be set.

– attributes: A list of additional attributes as key and value pairs.

Patmos: Patmos supports the following cache names: data-cache, stack-cache, method-cache and
instruction-cache. All other caches are ignored.

The data-cache must be a set-associative cache. The stack-cache must be of type stack-cache.
If a data cache but no stack cache is configured, requests to the stack cache will be handled through
the data cache. The method-cache must be a method cache. The instruction-cache must be a
set-associative cache.

It only allowed to specify both a method-cache and an instruction-cache if at least one of them
has the type set to none.

The platin pml-config tool can be used to easily switch between a method-cache and an instruction-
cache configuration. It will automatically set the correct types and link the caches to the memory
areas.

Attention: If an ideal data cache is configured, all stores through the data cache also have a zero-cycle
latency, but bypass loads (and bypass stores) are unaffected. Bypass loads and stores only have a
zero-cycle latency if the main memory is configured as ideal memory. In this case, all data and code
accesses have zero latency, regardless of the configured caches.

• memory-areas: The memory areas set up a mapping of address ranges to memories and define the caches
that are used for those address ranges and access types. Each mapping must define the following properties:

– name: The (unique) name of the cache.

– type: The type of the contained data, must be one of code or data.

– cache: The name of the cache that is used for this address range and type of data.

– memory: The name of the memory of this address range is mapped to.

– address-range: The start (inclusive) and the end (exclusive) of the address range as property min
and max. Defaults to 0 to the size of the backing memory if omitted.

– address-space: The name of the address space. Defaults to global.

– attributes: A list of additional attributes as key and value pairs.

87

8 The Patmos Compiler

Patmos: The address space must be either global or local. Local address space entries must not use
a cache, and must use an ideal memory.

Patmos supports the following named address spaces:

– code: The main code area for regular instruction fetches. It must be of type code, use global
address space, and refer to main memory or an ideal memory. It must use either the method-cache
or the instruction-cache such a cache is defined (with a type different than none).

– data: The main data area for data and stack accesses. It must be of type data, use global address
space, and refer to main memory. It must use the data-cache if such a cache is defined. This
area may only use an ideal memory if the main memory is ideal.

All other code areas are currently ignored. If any of the above address spaces is omitted, main memory
is used by default.

The following attributes are supported: heap-end sets the heap end pointer, stack-base sets the stack
base pointer, and shadow-stack-base sets the shadow stack base pointer. Those attributes can be
defined in any memory area, but must be defined at most once.

The tool-configurations Section This section can be used to specify additional command line options or
configuration values for various tools.

tool-configurations:
- name: "clang"
options: ["-mpatmos-disable-vliw"]

The section contains a list of tool configurations, consisting of the following entries:

• name (required): The name of the tool to configure. Corresponds to tool-config -t. Currently supported
tools are clang, pasim and ait.

• options: A list of command line options that should be passed to the tool when configured via tool-config
or when called internally. Note that if you want to pass multiple options, the options must be specified as a
YAML list, not as a single string, in order to be quoted correctly.

• configuration: A list of entries with key and value, specifying additional tool configuration values. The
names of the keys are tool dependent. Currently this is not used by any tool.

The analysis-configurations Section The analysis configuration is intended to set up one or more WCET
analysis variants, either for multiple analysis targets, or for analysing with multiple scenarios or analysis configura-
tions. For each named analysis, a program entry point, a (WCET) analysis entry point, as well as additional tool
configurations per analysis can be specified.

Attention: This section is currently work in progress and is only used to configure clang, but not the WCET
analyses.

8.3.3 Generating PML configurations

It is possible to generate or modify PML hardware models using platin pml-config.

platin pml-config --target patmos-unknown-unknown-elf -o config.pml -m 2k \
--set-cache-attr method-cache,max-subfunction-size,1024 \
--set-area-attr data,heap-end,0x18000

This creates a new default configuration and sets the method cache size to 2 kB and defines (or redefines) some
attributes. The result is stored in config.pml. It is also possible to print the result to stdout using -o -.

88

8.3 platin – The Portable LLVM Annotation and Timing Toolkit

It is also possible to modify an existing configuration. This command takes the previously generated PML file,
disables the method cache and creates a new instruction cache entry (with default values) and sets its size to 8 kB
(without changing the disable method-cache entry). The result is written to stdout.

platin pml-config -i config.pml -o - -C icache -m 8k

Attention: At the moment pml-config is the only tool that includes a hardware model in its PML output. All
other tools will skip any configuration section in its output. It is thus necessary to always explicitly pass the
configuration to platin, i.e., the following will not work as expected

platin pml -o merged.pml -i config.pml -i myprogram.pml
platin wcet -b myprogram -i merged.pml # This uses a default configuration!

because the merged file will not contain the configuration sections. Instead, the second command in this example
also needs the additional -i config.pml argument. This is because patmos-llvm currently does not support
importing PML files containing configuration sections, and may change in the future.

8.3.4 Exporting PML Metainfo During Compilation

To obtain PML files, the patmos-clang driver needs to be invoked with

patmos-clang -mserialize=<pml-file> [-mserialize-roots=<functions>] ...

The option argument <pml-file> is the filename of the PML file that is generated.
The option argument <functions> is a comma-separated list of function names to which the exporting of

Metainformation should be restricted. Note that inlining should be prevented for those functions (see Section 8.4),
otherwise they might be inlined and removed. By default, information for all functions reachable from main is
exported.

8.3.5 Obtaining AIS Annotations

The aiT timing analysis tool supports annotations in the form of AIS files. To generate a AIS annotation file from
a PML metainfo file, the platin pml2ais tool is used:

platin pml2ais --ais <output.ais> <input.pml>

8.3.6 Exporting Loop Bounds

Loop bounds obtained by the LLVM scalar evolution (SCEV) analysis on bitcode are exported as meta information.
To be usable as flow facts for WCET analysis, they must be resolved and transformed to machine-code level:

platin transform --transform-action=down --flow-fact-output=<name> \
--analysis-entry=<func> -i <input.pml> -o <output.pml>

where <name> is a name for the newly generated flow facts <func> is the entry function enclosing the program
points referred by the flow facts (main by default). <output.pml> and <input.pml> can be identical.

8.3.7 Example

In this section we demonstrate some of the tools of platin. We show a typical workflow by compiling and
analysing a small demo application on Patmos.

Listing 8.1 shows the content of sort.c. It contains a simple insertion sort implementation in function sort.
Our target function for analysis is gen_sort, which fills an array with N pseudo-random numbers and then sorts
the array. In order to prevent the compiler from inlining and removing our analysis target function, we mark the
function as noinline. The code contains loop bound annotations for the WCET analysis in the form of pragmas.

All tools in the Patmos tool chain are configured to use the default Patmos hardware configuration if no further
options are given. In this example we show how to use platin to configure a different hardware setup. For this,
we use pml-config to generate a modified hardware model:

89

8 The Patmos Compiler

Listing 8.1: Demo application that initialises and sorts an array.
#include <stdlib.h>

#define MAX_SIZE 100

void sort(int *arr, size_t N) {
#pragma loopbound min 0 max 99
for (int j = 1; j < N; j++) {
int i = j - 1;
int v = arr[j];
#pragma loopbound min 0 max 99
while (i >= 0 && arr[i] >= v) {
arr[i+1] = arr[i];
i = i - 1;

}
arr[i+1] = v;

}
}
void gen_sort(int *arr, size_t N) __attribute__((noinline));
void gen_sort(int *arr, size_t N) {
#pragma loopbound min 1 max MAX_SIZE
for (size_t i = 0; i < N; i++) {
arr[i] = rand() % N;

}
sort(arr, N);

}
int main(int argc, char** argv) {
srand(0);
int arr[MAX_SIZE];
size_t N = rand() % (MAX_SIZE / 2) + (MAX_SIZE / 2);

gen_sort(arr, N);

return 0;
}

platin pml-config --target patmos-unknown-unknown-elf \
-o config.pml -m 2k -M fifo8

This command generates a new config.pml file containing a description of the default hardware model, except
that we use a method cache of only half the size (2 KB size with a tag memory of 8 entries).

In the next step, we compile our program using the patmos-clang compiler driver. We also use the platin
tool-config tool to setup the compiler according to our modified hardware model. tool-config can be used in
a similar manner to setup pasim, the Patmos simulator. We need to explicitly enable optimisations with -O2, as the
default optimisation level is -O0.

patmos-clang ‘platin tool-config -i config.pml -t clang‘ \
-O2 -o sort -mserialize=sort.pml sort.c

The driver calls all commands necessary to compile the source code, link and optimise the bitcode and generate
and link the final binary sort. The option -mserialize causes the compiler to generate the PML file sort.pml.
It contains a description of the application control flow at bitcode level (after the bitcode optimisations) and of the

90

8.3 platin – The Portable LLVM Annotation and Timing Toolkit

Listing 8.2: Analysis report for the sort application

- analysis-entry: gen_sort
source: trace
cycles: 49089

- analysis-entry: gen_sort
source: platin
cycles: 644867
cache-max-cycles-instr: 651
cache-min-hits-instr: 398
cache-max-misses-instr: 3
cache-max-cycles-stack: 0
cache-max-misses-stack: 0
cache-max-cycles-data: 436779
cache-min-hits-data: 0
cache-max-misses-data: 10599
cache-max-stores-data: 10200
cache-unknown-address-data: 20799
cache-max-cycles: 437430

final machine code. It also contains value facts and flow facts such as loop bounds as found by the compiler as well
as our source-code loop annotations, and relation graphs relating the bitcode and machine code control flow graphs.

Now we are ready to analyse our target function. We use the platin wcet driver tool to run all necessary
commands, including the trace analysis and the platin WCET analysis tool WCA. The driver tool will automatically
try to run the AbsInt aiT analysis tool if it is installed.

platin wcet -i config.pml --enable-trace-analysis --enable-wca \
-b sort -e gen_sort -i sort.pml --outdir tmp \
-o wcet.pml --report report.txt

We need to pass the name of the binary file (-b) and both the compiler generated PML file and the hardware
model PML file (-i) to platin. The -e option tells platin the name of the analysis target function. The optional
-outdir option causes platin to keep temporary files and store them in the given directory, mainly the generated
project files for the AbsInt analyser tool a3patmos. The optional -o option stores detailed analysis results such as
the found WCET bounds for the target function, execution timings of basic blocks and execution frequencies of
blocks on the worst-case path along with the program information from the input files in a PML file for further
analysis or for WCET-driven optimisations.

The -report option causes platin to store the result summaries of the analyses in report.txt. Listing 8.2
shows the content of that file. In this example the platin WCET analysis derives a lower WCET bound than aiT.
aiT is able to find better loop bounds and thus finds fewer data cache misses for the sort loop, but it assumes higher
costs for instruction cache misses than platin.

Both analyses seem to highly over-approximate the actual WCET when compared to the trace results of the
execution. However, while we assume that in the worst case the whole array is used, the actual execution only fills
and sorts a fraction of the array. Hence the measured execution time is not a good indicator for the worst-case
performance.

The inner loop of the sort function is a triangle loop. Our annotated global loop bound of (N −1)2 is thus about
a factor of two too large. For loops with constant bounds, LLVM is capable of detecting such triangle loops and
deriving the correct bounds automatically. Our PML export uses the LLVM analysis results to generate additional
flow facts. platin provides a tool to print all flow facts in a PML file in a compact form.

platin pml -i sort.pml --print-flowfacts

91

8 The Patmos Compiler

Listing 8.3: Flow facts from LLVM and user annotations as reported by platin

=== flowfacts generated by llvm.bc ===
--- loop-bound ---
#<FlowFact origin=llvm.bc,level=bitcode, in #<Loop: gen_sort/for.cond>:

↪→ [1 gen_sort/for.cond] less-equal (1 + %N)>
#<FlowFact origin=llvm.bc,level=bitcode, in #<Loop: gen_sort/for.cond.i>:

↪→ [1 gen_sort/for.cond.i] less-equal (1 umax %N)>
#<FlowFact origin=llvm.bc,level=bitcode, in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less-equal 33>
#<FlowFact origin=llvm.bc,level=bitcode, in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less-equal 33>
=== flowfacts generated by user.bc ===
--- loop-bound ---
#<FlowFact origin=user.bc,level=bitcode, in #<Loop: gen_sort/for.cond>:

↪→ [1 gen_sort/for.cond] less-equal 101>
#<FlowFact origin=user.bc,level=bitcode, in #<Loop: gen_sort/for.cond.i>:

↪→ [1 gen_sort/for.cond.i] less-equal 100>
#<FlowFact origin=user.bc,level=bitcode, in #<Loop: gen_sort/while.cond.i>:

↪→ [1 gen_sort/while.cond.i] less-equal 100>
#<FlowFact origin=user.bc,level=bitcode, in #<Loop: __umodsi3/for.cond.i>:

↪→ [1 __umodsi3/for.cond.i] less-equal 33>

Listing 8.3 shows the output of that command. We find our manual loop annotations in the user.bc origin
section. Note that LLVM inlined the sort() function, therefore our loops are now in function gen_sort.2 The
loop bounds are expressed as flow constraints on the loop header blocks.3 We can also see that LLVM managed
to find parametric loop bounds for two loops, but failed to find a loop bound for the inner triangle loop since in
our case the size of the array to sort is not fixed but parametric. It is thus necessary to annotate the inner loop
manually. Platin supports arbitrary linear flow constraints in PML. It is possible to manually supply additional
flow constraints in PML format. Support for source code flow annotations beyond local loop bounds in the Patmos
compiler is planned for future development.

We can also use platin to visualise control-flow graphs, call-graphs and relation graphs:

platin visualize -i wcet.pml -o out -f gen_sort \
--show-timings=platin

This command generates all graphs for function gen_sort and stores them in the output directory out. Figure 8.2
shows the generated control-flow graphs at bitcode level (after optimisation) and of the final machine code. The
latter graph is the same graph that is used for WCET analysis by platin. Square boxes correspond to basic blocks or
basic block slices, while round boxes are virtual nodes inserted by platin. The block node labels in the machine code
graph show the address and the number of the basic block, as well as the name of the corresponding bitcode block
(in brackets) and the range of the instructions in the basic block slice (in square brackets). The -show-timings
option causes platin to highlight blocks and edges that are on the worst-case path found by the given analysis tool
in the machine-code graph. Edges between basic blocks are annotated with their worst-case execution frequency
and their associated WCET contribution.

2Function __umodsi3 implements the modulo operator, as Patmos does not provide a modulo instruction in hardware.
3The right-hand side of the constraint is larger than our loop bound by one because the loop header is executed one additional time more than

the loop body to jump out of the loop when the loop condition becomes false.

92

8.4 Patmos-clang C Frontend

8.4 Patmos-clang C Frontend

8.4.1 Inlining, Function Attributes

In contrast to GCC and the clang C frontend, LLVM by design attaches function attributes to function definitions
only, not to function declarations or function types. It is thus not possible to attach function attributes at call sites
or for external functions. Function attributes must be defined in the same unit as the definition, otherwise they are
silently discarded by the compiler.

Inlining functions The compiler follows the C99 rules for inlining. See here for an explanation: http://www.
greenend.org.uk/rjk/tech/inline.html

If a function is marked with inline only, it will not be emitted into the linked binary. Thus, to mark functions
as inline functions you must do one of the following:

• If the function is only used within one module, mark it as static inline. The function will not be visible
outside the module, like all static functions. The compiler will emit the function into the module if it is used.

static inline void foo(int n) {
...

}

• If the function should be used in several functions, define it ’inline’ everywhere, and add a declaration or
definition with ’extern inline’ in exactly one module.

extern inline void foo(int n);

inline void foo(int n) {
...

}

Prevent Inlining To prevent the compiler from inlining, use the noinline attribute.

void foo(int n) __attribute__((noinline));
void foo(int n) {

...
}

Note that function attributes are attached to function definitions only, as mentioned above. It is currently not
possible to prevent function inlining at the call site itself. The only way to prevent inlining for specific functions is
to either define them noinline at their definition, or to make the call an inline asm call. However, at the moment
inline asm is currently not supported by the platin analysis tools.

Marking Functions as Used To prevent the compiler from removing functions that have no call site in the
bitcode (either because they are entry functions or because the compiler generates the calls), add the ’used’ attribute
to the function declaration.

void _start(void) __attribute__((used));
void _start(void) {

...
}

Note that if the function is part of a module that is linked in from a bitcode archive, the compiler will not link in
the module if there is no usage of the function, even if it is marked as used. To force the linker to link in functions
from archives, add a declaration for that function in any of your used modules, or link a bitcode module just
containing declarations for those functions before linking with the library.

93

http://www.greenend.org.uk/rjk/tech/inline.html
http://www.greenend.org.uk/rjk/tech/inline.html

8 The Patmos Compiler

8.4.2 Target Triples and Target Identification

The Patmos tool-chain supports to following target triples:

patmos-unknown-unknown-elf Do not use an OS, start with main() on bare metal
patmos-unknown-rtems Compile and link for RTEMS

The C frontend defines the following macros for Patmos targets

__PATMOS__
__patmos__

For RTEMS, the following macros are also defined:

__rtems__

Use the following command to get a list of all defines for a target (do not omit -triple):

patmos-clang -cc1 -triple patmos-unknown-unknown-elf -E -dM </dev/null

The default target triple for patmos-clang (without -cc1!) is patmos-unknown-unknown-elf, if the program
is called patmos-clang. Otherwise, if the binary is called <target>-clang, then <target> is used as default
target triple if it is a valid triple. Otherwise, the host architecture (defined at configure time) will be used.

8.4.3 Inline Assembler

Inline assembly syntax is similar to GCC inline assembly. It uses %0, %1, ... as placeholders for operands.
Accepted register constraints are: r or R for any general purpose register, {$<registername>} to use a specific
register, i for immediates, or the index of an output register to assign an input register the same register as the
output register.

Example:

int i, j, k;
asm("mov $r31 = %1 # copy i into r31\n\t"

"add %0 = $r5, %2\n\t"
"call %3\n\t" // call myfunction
"nop ; nop \n\t" // delay slots
: "=r" (j)
: "0" (i), "{$r10}" (k), "i" (&myfunction)
: "$r5");

Please see Section 8.5 for a description of the Patmos assembler syntax.

8.4.4 Naked Functions

You can mark functions as naked to prevent the generation of a prologue, epilogue or any spill code. In such
functions, effectively only inline assembly is allowed. It is possible to use simple C code in naked functions, as long
as the compiler does not need to spill registers. Note that the amount of spills generated by the compiler depends
on the optimization settings, i.e., naked functions containing C code might not compile at -O0. In particular, life
ranges of variables must not extend over basic blocks, over calls or over inline assembly code.

Note that the compiler might choose to inline functions into naked functions. To prevent this, put your C code
into a separate function that is marked as noinline, and only call this function from the naked function.

At the time of writing, the compiler automatically inserts a return instruction in naked functions. This behavior
might be changed in the future, i.e., naked functions should either contain an explicit return statement or a RET
instruction in the inline assembler whenever the control flow reaches the end of the function.

void foo(int n) __attribute__((naked));
void foo(int n) {

asm("nop");
}

94

8.4 Patmos-clang C Frontend

8.4.5 Patmos Specific IO Functions

The following header define functions to read out the CPU ID, the clock counter and the real-time clock (RTC), as
well as to interface with the UART and to setup exception and interrupt handler.

#include <machine/patmos.h>
#include <machine/uart.h>
#include <machine/exceptions.h>

Please refer to the headers in patmos-newlib/newlib/libc/machine/patmos/machine/ for documentation
for now.

8.4.6 Scratchpad Memory

Use the following header to get the relevant functions and macros:

#include <machine/spm.h>

The _SPM macro must be used for all pointers that point into the SPM.

_SPM unsigned int *spm_data = (_SPM unsigned int*) 0x1234;

You can use the spm_copy_from_ext and spm_copy_to_ext functions to copy data from global memory to
SPM and back. Use spm_wait() to wait for the copy transaction to complete.4

8.4.7 Placing Functions into the Instruction Scratchpad

Functions that should be placed into and executed from the instruction scratchpad must be placed at a specific
address range (see Table 3.2). This can be achieved by assigning such functions to a different segment in the ELF
objects, and then instructing the linker to place these segments at a different address.

TODO: Explain how those functions are loaded into the ISPM. By the boot loader?
Functions can be assigned to a segment using the following attribute.

void foo(int i) __attribute__((section(".text.spm")));
void foo(int i) {

...
}

While the section name can be arbitrary, it should start with .text. so that functions are placed into the text
segment by default. The .text.spm segment name is used by some functions in patmos-newlib.

By default, any .text.* section will be linked in at the end of the text segment in the executable binary. In
order to define the address of the section, a linker script must be used and provided at the linking stage. Such a
linker script is provided in patmos/hardware/spm_ram.t.

SECTIONS
{

. = SEGMENT_START(".rodata", 0x400);

.rodata : { *(.rodata .rodata.*) }

.init_array : { *(SORT(.init_array.*) .init_array) }

.fini_array : { *(SORT(.fini_array.*) .fini_array) }

.data : { *(.data) }

.bss : { *(.bss) }

. = ALIGN(8);

4At the moment memory copy is performed by the processor and is a blocking function. In future versions of Patmos this might be delegated
to a DMA and then the wait function might be needed.

95

8 The Patmos Compiler

Name Value Description

R_PATMOS_NONE 0 no relocation
R_PATMOS_CFLB_ABS 1 CFLb format (22 bit immediate), absolute (unsigned), in words
R_PATMOS_CFLB_PCREL 2 CFLb format (22 bit immediate), PC relative (signed), in words
R_PATMOS_ALUI_ABS 3 ALIi format (12 bit immediate), absolute (unsigned), in bytes
R_PATMOS_ALUI_PCREL 4 ALUi format (12 bit immediate), PC relative (signed), in bytes
R_PATMOS_ALUL_ABS 5 ALUl format (32 bti immediate), absolute (unsigned), in bytes
R_PATMOS_ALUL_PCREL 6 ALUl format (32 bit immediate), PC relative (signed), in bytes
R_PATMOS_MEMB_ABS 7 LDT or STT format (7 bit immediate), signed, in bytes
R_PATMOS_MEMH_ABS 8 LDT or STT format (7 bit immediate), signed, in half-words
R_PATMOS_MEMW_ABS 9 LDT or STT format (7 bit immediate), signed, in words
R_PATMOS_ABS_32 10 32 bit word, absolute (unsigned), in bytes
R_PATMOS_PCREL_32 11 32 bit word, PC relative (signed), in bytes

Table 8.2: ELF relocation types

_end = .; PROVIDE (end = .);

. = SEGMENT_START(".text.spm", 0x10000);

.text.spm : { *(.text.spm) }

. = SEGMENT_START(".text", 0x20000);

.text : { *(.text .text.*) }

}

The linker script must then be passed to the linker.

patmos-clang -Xgold -T -Xgold path/to/spm_ram.t -o hello hello.o

Note that the instruction scratchpad is currently not available in the multicore version of Patmos. TODO: why?

8.5 Patmos Compiler Backend

8.5.1 ELF File Format

ELF Identification:

e_machine: EM_PATMOS = 0xBEEB

ELF Relocation infos: Table 8.2 shows the ELF relocation types.

Subfunctions, Symbols:

• ELF Symbol flags:

– MCSA_ELF_TypeCode / STT_CODE (value 13): set for symbols which point to the beginning of a (sub)
function (i.e., the first instruction after the alignment and function size word)

• Function symbol points to first instruction of function, has .type function, .size is whole function size

• Code symbol points to first instruction of subfunction, has .type code, .size is size of subfunction

• The first subfunction of a function only has a function symbol, following subfunctions have a code symbol
(i.e., the size value for the first subfunction in the symbol is not the same as the actual size)

96

8.5 Patmos Compiler Backend

8.5.2 LLVM backend fixups, symbols, immediates

At MC level, immediates are always in byte/half-word/word as the instruction where they are used, i.e., immediates
are already properly shifted.

The assembler parser and assembler printer (i.e., the disassember and .s emitter) parse and print immedates
without conversion, i.e., immediates are printed in words/half-words/bytes, depending on the instruction.

8.5.3 Assembler Syntax

This section describes the assembler syntax of the LLVM assembler parser and printer, as well as the inline
assembler.

Note that the paasm assembler provided with Patmos has a slightly different syntax, i.e., opcode mnemonics
have suffixes, the syntax for bundles is different, and only a very limited set of directives is accepted by paasm.

General Instruction Syntax: Each operation is predicated, the predicate register is specified before the operation
in parentheses, e.g. (p1) <instruction>. If the predicate register is prefixed by a !, it is negated. If omitted, the
predicate defaults (p0), i.e., always true.

All register names must be prefixed by $. The instructions use destination before source in the instructions.
Between destination and source a = character must be used instead of a comma.

Immediate values are not prefixed for decimal notation, the usual 0 and 0x formats are accepted for octal and
hexadecimal immediates. Comments start with the hash symbol # and are considered to the end of the line.

For memory operations, the syntax is [$register + offset]. Register or offset can be ommited, in that case
the zero register r0 or an offset of 0 is used.

Labels that are prefixed by .L are local labels. Labels may only appear between bundles, not inside bundles.
Example:

add 42 to contents of r2
and store result in r1 (first slot)
{ add $r1 = $r2, $42
if r3 equals 50, set p1 to true
cmpeq $p1, $r3, 50 }
if p1 is true, jump to label_1
($p1) br .Llabel1 ; nop ; nop # then wait 2 cycles
Load the address of a symbol into r2
li $r2 = .L.str2
perform a memory store and a pred op
{ swc [$r31 + 2] = $r3 ; or $p1 = !$p2, $p3 }
...

.Llabel1:
...

Bundles: A semi-colon ; or a newline denotes the end of an instruction or operation. If an instruction contains
two operations, the operations in the bundle must be enclosed by curly brackets. For bundles consisting only of
one operation, the brackets are optional.

Known bugs: The closing bracket must appear on the same line as the last operation in the bundle. The opening
bracket might be followed by a newline, but no comments or labels may appear between the bracket and the first
operation.

Function Block Start Markers and Subfunction Calls: Functions must be prepended by the .fstart directive
that emits the function size word and aligns the code.

.fstart <label>, <size-in-bytes>, <alignment-in-bytes>

97

8 The Patmos Compiler

The alignment must be a power of 2. The function size must be the size of the following (sub-)function. If a
function is split into several subfunctions, the size must be the size of the first sub-function, not the size of the
whole function (this differs from the .size directive).

.type foo,@function

.size foo, .Ltmp2-foo # size of foo symbol is the whole function

.fstart foo, .Ltmp0-foo, 4
foo: # start of foo function

sres 10
...
brcf .Ltmp1 # Fallthrough to different subfunction is not allowed
nop
nop
nop

.Ltmp0: # end of first subfunction of foo

.type .Ltmp1,@code

.size .Ltmp1, .Ltmp2-.Ltmp1

.fstart .Ltmp1, .Ltmp2-.Ltmp1, 4
.Ltmp1: # start of second subfunction of foo

...
ret $r30, $r31 # returns from foo, not from the subfunction
nop
nop
nop

.Ltmp2: # end of (second subfunction of) foo

To set the address of a function relative to the start of the section, use the .org directive before the .fstart directive
and allow for the function size word so that .fstart does not emit any padding.

.org <aligned startaddress>-4

.fstart .foo, .Ltmp0-.foo, <alignment>
foo:

....

8.5.4 Address Spaces

Set address space of a pointer by using __attribute__((address_space(<nr>))). See patmos.h in newlib.
Used address spaces:

• Address Space 0 (default): main memory with data cache

– nontemporal flag: main memory with bypass Set only by the compiler (at the moment)

• Address Space 1: (local) scratchpad memory

– use macro _SPM defined in <machine/spm.h> for SPM accesses

– use macro _IODEV defined in <machine/patmos.h> to access memory mapped IO devices

• Address Space 2: Stack cache

– Compiler-maintained, must not be used in application code (at the moment)

• Address Space 3: main memory with data cache bypass

– use macro _UNCACHED defined in <machine/patmos.h>

98

8.6 Newlib

8.6 Newlib

The Patmos compiler contains a port of newlib, a C library intended for embedded systems. When writing
downloadable applications it is suggested to use newlib functions instead of the low-level functions provided by
Patmos specific IO functions.5

Documentation of the provided newlib library and available functions is available at:
https://sourceware.org/newlib/

8.7 Known Bugs, Restrictions and Common Issues

Undefined reference to <libc function>: Some LLVM passes might create calls to standard library functions
after the bitcode linking phase. We added all such functions that we found to libcsyms.ll.in in compiler-rt.
If we missed some functions, they must be added. Alternatively, newlib and compiler-rt could be compiled as ELF
libraries.

It could also be the case that newlib needs to be recompiled, or that your linking order is wrong (be aware that
mixing bitcode or C files, assembly files and ELF files causes the linking order to be changed).

Inline assembler: Clobbering the registers $r30/$r31 is not supported and calls inside inline assembler will not
cause the prologue to save $r30/$31. Do not modify them in inline assembly.

Inline assembler: Constraining an output to a register ("=$r10") does not work, for some reason LLVM looses
the output register operand somewhere between SelectionDAGBuilder::visitInlineAsm() and AsmPrinter::EmitInlineAsm().

C code in __naked__ functions: Writing C code statements in naked functions might cause the compiler to
spill registers (be aware that the compiler will spill much more registers at -O0!). This is not supported since naked
function do not have a prologue or epilogue setting up the stack frame.

patmos-{objdump,objcopy,..} does not support Patmos ELF files: Only patmos-ld supports the Patmos
ELF file type. patmos-ar and patmos-nm have some support for bitcode archives (when the LLVMgold plu-
gin is compiled, default for build.sh builds). Other binutils tools have no support for Patmos ELFs. Use
patmos-llvm-objdump and patmos-ld instead.

Compiling patmos-gold with GCC 4.7.0 aborts with an error about narrowing conversion: Workaround:
use CXXFLAGS=-Wno-narrowing for configure, upgrade to a newer GCC version or use clang to compile the
toolchain.

If you are using the build.sh script, set GOLD_CXXFLAGS="-Wno-narrowing" in build.cfg.

Keeping relocations in the executable (-Xgold -q) and debugging info (-g) do not work together: This seems
to be a gold restriction.

8.8 New Version

As part of an updating effort, a new version of Patmos’ compiler is available, henceforth referred to as v2. This
version is still based on LLVM, however has been updated to newer LLVM versions (and is easier to further update
in the future.) However, this compiler is not as feature rich as the original (yet,) still rather buggy, and is not strictly
compatible with v1. Therefore, this section describes how to install it and what differences it has compared to the
old compiler. The aim is to eventually move to the v2. Therefore, everyone should aim to use it by default and only
stay on v1 in case they cannot make v2 work, e.g., if a bug is that blocks them.

5Those functions are mainly used to write very small footprint programs, such as the bootloader itself.

99

https://sourceware.org/newlib/

8 The Patmos Compiler

8.8.1 Installation & Building

A nice feature of v2 is that we provide pre-built binaries for our two directly supported systems Ubuntu and MacOS.
To install patmost using the v2 compiler use the following command from the t-crest folder:

./misc/build.sh -q toolchain2

This behaves exactly the same as the default shown in section 6.2, except that the simulator and v2 compiler are
downloaded from pre-builts and installed instead of being built locally. Omitting the ’-q’ will instead build the
simulator and v2 compiler locally (useful if you are not on a directly supported system, or if the pre-builts don’t
work correctly.) Using the pre-built can greatly reduce installation time (from hours to seconds.)

Since v2 is not compatible with v1, code and make-files written for the later might not work the former.
Therefore, the patmos repository (github.com/t-crest/patmos) has a ’llvm2’ branch that has been ported to v2.
The patmos build target (./misc/build.sh patmos) will automatically detect which compiler type is used, and
ensure the right branch is used.

8.8.2 Changes from v1 to v2

Here is a list of the changes in functionality from v1 to v2 that should be taken into account when modifying
projects to work on the new compiler.

• Can no longer use clang as a linker using the below flags: -fpatmos-nolibsyms, -fpatmos-noruntimelibs,
-fpatmos_link_object. Instead, use "-c" to create object files and then call the linker directly (patmos-ld.lld).

• Removed flag -fpatmos-skip-opt. Use "-O0" instead.

• Using v1, the "-c" would compile to bitcode by default. This has been changed to compile to object code by
default, to better align with Clang’s behavior for other targets. Likewise, "-S" outputs textual bitcode in v1.
In v2 it outputs textual assembly.

• Removed flag -fpatmos-emit-asm. Use "-S" instead.

• Multiple patmos-clang patmos-specific flags have been removed. Instead, call the equivalent patmos-llc
flags using -mllvm prefix:
-mpatmos-disable-stack-cache→ -mllvm -mpatmos-disable-stack-cache
-mpatmos-disable-function-splitter→ -mllvm -mpatmos-disable-function-splitter
-mpatmos-disable-vliw→ -mllvm -mpatmos-disable-vliw
Note how the flags need 2 "-" instead of the previous 1.

• Removed flag "-Xgold". Using "-Wl," instead.

• Removed flag "-Xllc". Using "-mllvm" instead.

• In inline assembly, input-, ouput-, and clobber registers should no longer have a "$" prefix. I.e. instead of
"$r1" use "r1" as clobber register. In the inline assembly proper, registers need/allow 1 "$" only.

• Naked functions can only include inline assembly. No other code is allowed per the C standard. If you want
to use C code in a naked function, you can manually call a non-naked function from the inline assembly.

• The linker has been changed from the old Gold linker, which has been deprecated by its maintainers, to
LLVM’s own LLD linker.

8.8.3 Known bug and workarounds

v2 is still in the early stages and is filled with bugs. This section lists some known problems and potential
workaround.

• Not all optimization flags work equally well. The most stable and tested flag is "-O2". We recommend
everyone use this exclusively until further notice.

100

8.8 New Version

• There is a problem with code using jump tables not being compiled to object files correctly. This can
manifest as a link error like:
patmos-ld.lld: error: download.c:(function download: .text+0x218): relocation Unknown
(5) out of range: 18446744073441148944 is not in [0, 4294967295]

To avoid this problem, the -fno-jump-tables flag can be passed to patmos-clang to avoid this. Notice
that relocation errors in LLD can often cascade, meaning an error one place can make the linker issue errors
for other places that usually wouldn’t occur.

• Unknown errors are causing the bootloader to compile wrong. This means running prorams on an FPGA as
described in section 1.2 will fail. There is no currently known workaround. However, building bootable
programs in general, as described in subsection 1.2.3, can work. Additionally, running programs on the
simulator and emulator should work too.

101

8 The Patmos Compiler

CFG for gen_sort

entry |1|

for.cond |4|

for.body |28| for.cond.i |4|

for.body.i |3| sort.exit |1|

while.cond.i |5|

land.rhs.i |5|

while.end.i |4|while.body.i |3|

(a) Bitcode CFG

CFG for 7/gen_sort

START

0x20624: 0(entry) [0..21]

END

LOOP enter 1

 f = 1
 max = 22 cycles
 sum = 22 cycles

0x20694: 1(for.cond) [0..1]

0x2069c: 1(for.cond) [2..2] 0x20754: 9(for.body) [0..39]

 f = 100
 max = 257 cycles
 sum = 752 cycles

LOOP exit

 f = 1
 max = 5 cycles
 sum = 5 cycles

0x206a0: 2(while.body.i) [0..2]

LOOP cont 5

 f = 9801
 max = 24 cycles
 sum = 235224 cycles

0x206ac: 3(while.end.i) [0..3]

LOOP cont 7

 f = 99
 max = 25 cycles
 sum = 2475 cycles

0x206bc: 4(land.rhs.i) [0..5]

 f = 9801
 max = 29 cycles
 sum = 284229 cycles

0x206d4: 4(land.rhs.i) [6..6]

LOOP exit

 f = 99
 max = 30 cycles
 sum = 2970 cycles

0x206d8: 5(while.cond.i) [0..1]

0x206e0: 5(while.cond.i) [2..2]

LOOP exit
 f = 9900
 max = 5 cycles
 sum = 49500 cycles

0x206e4: 6(for.body.i) [0..3]

LOOP enter 5

 f = 99
 max = 25 cycles
 sum = 2475 cycles

0x206f4: 7(for.cond.i) [0..1]

0x206fc: 7(for.cond.i) [2..2]

LOOP exit

 f = 1
 max = 4 cycles
 sum = 4 cycles

 f = 99
 max = 5 cycles
 sum = 495 cycles

LOOP exit

 f = 1
 max = 4 cycles
 sum = 4 cycles

0x20700: 8(sort.exit) [0..16]

 f = 1
 max = 17 cycles
 sum = 17 cycles

CALL __umodsi3()

0x20804: 9(for.body) [40..44]

LOOP cont 1

 f = 100
 max = 507 cycles
 sum = 23673 cycles

LOOP enter 7

(b) Machine-code CFG with platin WCET results

Figure 8.2: Bitcode and machine-code control-flow graphs for gen_sort.

102

9 Potential Extensions

9.1 Multiply / Wait / Move from Special

• Attaching a ready flag with all special registers.

• Specify destination special register with all decoupled operations; the operation sets/resets the ready flag
accordingly.

• Wait operates on ready flags of special registers.

• Merged variant of Wait + Move from Special

• Wait with 16-bit mask to wait for multiple outstanding results.

This would be nice since it would allow to reload all special registers from memory without going through
the general purpose registers. It would be a unified interface for decoupled operations and give more freedom to
handle parallel decoupled operations (pipelined multiplies, loads). We could apply this also to the general purpose
registers instead of the special registers.

9.2 Bypass load checks data cache

Let the bypass load use the data cache if the data is cached. If the data is not in the cache, load it from main
memory, but do not update the data cache (in contrast to the normal load). Therefore the compiler could use bypass
to load data that will not be used a second time or that might have a negative impact on the cache analysis, but we
still take advantage of the cache if the data is already in the cache.

9.3 Merged Stack Cache Operations and Function Return

This might require an additional special-purpose register(?) to track the size of the last reserve instruction (this
register might also be set explicitly). However, it would might reduce the number of ensure instructions needed.

Another option would be to merge the return and stack free operations. Both instructions belong to the same
function and, due to the simpler semantics of the free, the combination would be easier to implement.

9.4 Non-Blocking Stack Control Instructions

Currently, all stack control operations, except sfree, are blocking. It might be useful to define non-blocking
variants or define them to be non-blocking in all cases.

It is questionable whether this would actually buy us anything. Most sres instructions will be followed by a
store to the stack cache (spill of saved registers). It might be more profitable for sens instructions.

9.5 Freeze Cache Content

• Bypass load can be used to avoid cache updates, but not on per-context basis (we cannot lock the cache and
then call any function and assume the function does not update the cache. Instead we would need to generate
function variants that only use bypass loads).

• Method cache freeze? Or should we just use a I-SPM for this if we want instruction cache locking?

103

9 Potential Extensions

9.6 Unified Memory Access

Instead of having typed loads per cache or SPM, maybe have types per “use-case scenario”, use local memory
based on address

• Type for stack access (guaranteed hit, can be used in both slots)

• Type for guaranteed hit (any local SPM access, access to data cache must be always hit, else undefined
result)

• Type for unknown data access (access SPM or data cache, or main memory and update data-cache)

• Type for bypass (access SPM or main memory, do not allocate in data cache)

• Maybe a type for no-allocate (access SPM, data cache or main memory, but do not allocate data in cache;
could be useful to prevent single loads from thrashing the cache), or use some sort of cache-lock instruction
instead (could be useful to prevent a code sequence or function call from thrashing the cache)

9.7 DMA Interface

• Transfers between local and global memory

• Through special registers

• Alternatively, dedicated instructions dmastart and dmalen
012345678910111213141516171819202122232425262728293031

x 01010 Pred Type Ra Rs

Type Mnemonic Operation
00001 dma.sp Start memory copy

which contain the word
xx001 st.sc Stack cache, no write through to

main memory, never wait
xx010 st.sp Scratchpad, no write through to

9.8 Data scratchpad

• Every core has its D-SPM with its own address range (all in the same address space), a core can write to the
D-SPM of another core by writing to an address of the SPM of that core.

• Maybe have some sort of protection mechanism, to prevent cores from writing to any address in any remote
SPM

• How do we handle writes to the same address by (remote) dma transfers and local writes (this might prevent
local load and stores to the SPM from completing in a single cycle)?

9.9 Halt

9.10 Floating-Point Instructions

9.11 Prefetching

• For method cache

• For local memory

104

9.12 Data Caches

9.12 Data Caches

• Add a second (possibly larger), simple (direct mapped,..) data cache, to be used when the pointer address
is known at compile time (i.e., a load does not destroy the whole cache state in the analysis), for array
operations, ..

• We would need additional types in the load operation for that cache, but there are only two unused types left.
Either use only blocking (?) loads and only word and byte (?) access, or replace some lesser used types, or
even introduce a new opcode somehow..

9.13 Instruction scratchpad

• For instruction handlers or other code that should not destroy the method cache

• Could be used to store code that is executed at a call site (even if the method cache entry of the caller gets
replaced)

• Replacement of code at runtime, statically scheduled or with some sort of software-controlled replacement
strategy (maybe this could be used to prevent threads from destroying the I-cache of real-time tasks)

• Keep frequently used code on the I-SPM, can be used to do some sort of cache locking (instead of somehow
locking the method cache).

9.14 Wired-AND/OR for predicates

Let cmp be some operation that sets a predicate Pd and is predicated by Pred. Then we could define the following
variants:

cond: if (Pred) Pd = <cmp>
and: if (Pred && !<cmp>) Pd = False
or: if (Pred && <cmp>) Pd = True
uncond: Pd = Pred && <cmp>

Note that we do not need to read Pd, but the last variant uses Pred as input, not as write-enable signal. First
variant is the normal (conditional) execution. The last variant forces Pd to false if Pred is false, thus saving the
initialization of Pd or explicit and with Pred for code like

if (p1) p2 = R1 < R2
if (p2) ...

The other variants can be used to implement stuff like

if (a != 0 && b < 5) { .. }

p1 = cmpnez r1, addi r3 = r0 + 5;
p1 &= cmplt r2, r3

To implement a != 0 && b > 1 we would need an additional bit that negates either the result of <cmp> or the
value that is assigned to Pd (including the true and false assignments).

Note that if we do not need Pred, we can do and and or simply as

Pd &= <cmp> ... if (Pd) Pd = <cmp>
Pd |= <cmp> ... if (!Pd) Pd = <cmp>

i.e., we use Pd as Pred.

105

9 Potential Extensions

9.15 Deadline instruction
012345678910111213141516171819202122232425262728293031

x 01011 Pred Counter

Wait until the deadline counter reaches zero, then restart the counter with the given initial value.

106

10 Conclusion

Patmos is the next cool thing in the dry world of real-time systems.

107

10 Conclusion

108

Bibliography

[1] S. Abbaspour, F. Brandner, and M. Schoeberl. A time-predictable stack cache. In Proceedings of the 9th
Workshop on Software Technologies for Embedded and Ubiquitous Systems, 2013.

[2] Accellera Systems Initiative. Open Core Protocol specification, release 3.0, 2013.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek, and K. Asanovic. Chisel:
constructing hardware in a scala embedded language. In P. Groeneveld, D. Sciuto, and S. Hassoun, editors,
The 49th Annual Design Automation Conference (DAC 2012), pages 1216–1225, San Francisco, CA, USA,
June 2012. ACM.

[4] S. A. Edwards and E. A. Lee. The case for the precision timed (PRET) machine. In DAC ’07: Proceedings of
the 44th annual conference on Design automation, pages 264–265, New York, NY, USA, 2007. ACM.

[5] R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static program analysis. Technical
report, AbsInt Angewandte Informatik GmbH. [Online, last accessed November 2013].

[6] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner. The platin tool kit - the T-CREST approach for
compiler and WCET integration. In Proceedings 18th Kolloquium Programmiersprachen und Grundlagen
der Programmierung, KPS 2015, Pörtschach, Austria, October 5-7, 2015, 2015.

[7] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis & transformation.
In International Symposium on Code Generation and Optimization (CGO’04), pages 75–88. IEEE Computer
Society, 2004.

[8] I. Mohor. Ethernet IP core specification. Technical report, 2002. Revision 1.19, Available at http:
//opencores.org/svnget,ethmac?file=%2Ftrunk%2F%2Fdoc%2Feth_speci.pdf.

[9] L. Pezzarossa, J. K. Toft, J. Lønbæk, and R. Barnes. Implementation of an ethernet-based communication
channel for the patmos processor. Technical report, Technical University of Denmark (DTU), 2015.

[10] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard. The T-CREST approach of compiler
and WCET-analysis integration. In 9th Workshop on Software Technologies for Future Embedded and
Ubiquitious Systems (SEUS 2013), pages 33–40, 2013.

[11] M. Schoeberl. Time-predictable computer architecture. EURASIP Journal on Embedded Systems, vol. 2009,
Article ID 758480:17 pages, 2009.

[12] M. Schoeberl, B. Huber, and W. Puffitsch. Data cache organization for accurate timing analysis. Real-Time
Systems, 49(1):1–28, 2013.

[13] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst, S. Karlsson, and T. Thorn. Towards a
time-predictable dual-issue microprocessor: The Patmos approach. In First Workshop on Bringing Theory
to Practice: Predictability and Performance in Embedded Systems (PPES 2011), pages 11–20, Grenoble,
France, March 2011.

109

http://opencores.org/svnget,ethmac?file=%2Ftrunk%2F%2Fdoc%2Feth_speci.pdf
http://opencores.org/svnget,ethmac?file=%2Ftrunk%2F%2Fdoc%2Feth_speci.pdf

	Preface
	Introduction
	Hello World
	Building Patmos
	A Few Assembler Instructions
	We Can Blink in Assembler
	A C Based Blinking LED
	Make Targets
	Download of ELF Files
	A More Complex Application and the Apps Folder
	Supported FPGA Boards
	Multicore Patmos

	Worst-Case Execution Time Analysis
	Getting Started with Patmos
	Hello World
	Assembler Programming
	I/O Programming
	Periodic Tasks
	Adding an IO Device to Patmos
	Further Steps

	The Architecture of Patmos
	Pipeline
	Fetch
	Decode
	Execute
	Memory
	Write Back

	Local Memories
	Register Files
	Bundle Formats
	Instruction Formats
	Instruction Opcodes
	Binary Arithmetic
	Multiply
	Compare
	Predicate
	Bitcopy
	Move To Special
	Move From Special
	Load Typed
	Store Typed
	Stack Control
	Control-Flow Instructions
	Instruction List

	Exceptions: Interrupts, Faults and Traps
	Exception Vector
	Traps
	Return Information
	Resuming Execution
	Delayed Triggering of Interrupts
	Sleep Mode
	Cache Control
	Examples

	Dual Issue Instructions
	Assembly Format
	Instruction Mnemonics
	Inline Assembly

	Configuration and Default Setup

	Memory and I/O Subsystem
	Local and Global Address Space
	I/O Devices
	CpuInfo
	Timer
	UART
	Deadline
	EthMac
	Memory Management Unit

	Stack Cache
	Stack Cache Manipulation

	Instruction Cache
	Method Cache
	Traditional Instruction Cache

	Data Cache
	Hardware Interface
	OCPcore
	OCPcache
	OCPio
	OCPburst
	Remarks

	Example I/O Device

	Application Binary Interface
	Data Representation
	Register Usage Conventions
	Function Calls
	Sub-Functions
	Stack Layout
	Interrupts and Context Switching

	Implementation
	Component Organization and Pipeline Structure
	Register File
	Resource and Fmax Numbers
	ALU Discussion

	Build Instructions
	Setup
	Ubuntu
	Mac OS X
	Windows 10

	Building Patmos and the Compiler Tool Chain
	Quartus on Linux
	The Xilinx ML605 Platform
	Getting the Xilinx Configuration Cable to Work
	Updating the Patmos Cores with Aegean

	Testing
	ModelSim License

	Tools
	Simulation, Emulation, and Execution
	pasim
	Patmos Emulator
	config_altera
	config_xilinx
	patserdow
	patex

	Patmos Developer Tools
	elf2bin
	pacheck
	paasm
	padasm

	The Patmos Compiler
	Overview
	Compiling with the patmos-clang Driver
	Compiling and Linking C Programs
	Disassembling
	Debugging
	Various options

	platin – The Portable LLVM Annotation and Timing Toolkit
	The PML File Format
	PML Architecture- and Tool Configuration
	Generating PML configurations
	Exporting PML Metainfo During Compilation
	Obtaining AIS Annotations
	Exporting Loop Bounds
	Example

	Patmos-clang C Frontend
	Inlining, Function Attributes
	Target Triples and Target Identification
	Inline Assembler
	Naked Functions
	Patmos Specific IO Functions
	Scratchpad Memory
	Placing Functions into the Instruction Scratchpad

	Patmos Compiler Backend
	ELF File Format
	LLVM backend fixups, symbols, immediates
	Assembler Syntax
	Address Spaces

	Newlib
	Known Bugs, Restrictions and Common Issues
	New Version
	Installation & Building
	Changes from v1 to v2
	Known bug and workarounds

	Potential Extensions
	Multiply / Wait / Move from Special
	Bypass load checks data cache
	Merged Stack Cache Operations and Function Return
	Non-Blocking Stack Control Instructions
	Freeze Cache Content
	Unified Memory Access
	DMA Interface
	Data scratchpad
	Halt
	Floating-Point Instructions
	Prefetching
	Data Caches
	Instruction scratchpad
	Wired-AND/OR for predicates
	Deadline instruction

	Conclusion
	Bibliography

