
Getting Started with Patmos

Martin Schoeberl

March 8, 2016

These exercises are intended to make you familiar with the Patmos proces-
sor and the T-CREST tool chain. The main documentation for the exercise if
the Patmos Reference Handbook, which is online available at http://patmos.
compute.dtu.dk/ (and as source in t-crest/patmos/doc/handbook).

1 Introduction

This manual assumes that you have the virtual machine (VM) image with the T-CREST tools
installed and already compiled. The T-CREST project is hosted at GitHub1 within several git
repositories. You find those repositories local in your VM under directory t-crest.

The Patmos processor source lives in directory patmos, the directory where you will do
most examples.

The build instructions and most exercises for this lab are described in Chapter 6 in the
Patmos handbook. As the full tool chain is already setup in your VM, you can skip Section
6.1.

2 Hello World

We start with the standard Hello World:

main() {
printf("Hello Patmos!\n");

}

With the Patmos compiler installed and in the PATH it can be compiled to a Patmos exe-
cutable and run with the simulator as follows:

patmos-clang hello.c
pasim a.out

1https://github.com/t-crest

1

http://patmos.compute.dtu.dk/
http://patmos.compute.dtu.dk/
https://github.com/t-crest


However, this innocent examples is quiet challenging for an embedded system: It needs a C
compiler, an implementation of the standard C library, printf itself is a challenging function,
the generated ELF file needs to be understood by a tool and the individual sections down-
loaded, and finally a terminal (often a serial line) needs to be available on the target, and your
test PC needs to have a serial line as well and a terminal program needs to run.

Therefore, we might start with a minimal assembler program and execute that in the simu-
lator and emulator.

If you have not yet downloaded the handbook you can also build it on your VM:

cd t-crest/patmos/doc/handbook
make

3 Assembler Programming

All compilation and generation is based on Makefiles.
To prepare that all assembler tools are compiled and installed execute

make tools

in the patmos folder.
The assembler programs are located in subfolder asm. Take a look into basic.s and try to

understand what this small program does. Assemble the example with:

make asm BOOTAPP=basic

You should now find a basic.bin in the tmp folder. This file is just a plain binary file con-
taining the instructions for Patmos. You can display binary files with the Unix command od
(e.g., with od -t x1 tmp/basic.bin). The first 32-bit word in the binary file is the length
of the function, that number that was defined in the assembler file with .word 40;. The next
word should be the first instruction. Look into the Patmos handbook and check if the encoding
of the first instruction is correct.

Now execute this ‘progam’ on the simulator pasim. As there is nothing written to stdout, the
simulator will not output much. Explore the options (with -h) to enable dumping of register
contents. The simulator can also print statistics of instruction usage and caches. The assembler
and the software simulator can be executed with one step with the help of the Makefile:

make swsim BOOTAPP=basic

The software simulator pasim is a C based simulator of the Patmos processor.
Patmos itself is written in Chisel a high level language for hardware design. Chisel is

a language embedded in Scala. Therefore, you have the full power of Scala available. The
Chisel code can generate Verilog code for the hardware synthesis and a C++ based emulator
to simulate the hardware. The benefit of this Chisel based emulator is that it is exactly the
same function as the hardware.

The emulator (the Chisel based simulator) can execute the same program with following
command:

2



make hwsim BOOTAPP=basic

This command assembles the application, executes the Chisel based hardware construction
during which the program is used to initialize the on-chip ROM, generates a C++ based em-
ulator, compiles that emulator, and executes it. The emulator shows the register content after
each instruction.

Those two Patmos simulations, the software simulator and the Chisel based emulator, are
used for a co-simulation based test. In this co-simulation all available assembler programs are
executed in both simulations and the register out put is compared.

You can watch the hardware details by dumping the wave form during the execution of the
emulator. To enable waveform dumping you need to add the -v option for the call of the
emulator in hardware/Makefile:

test: emulator
$(HWBUILDDIR)/emulator -v -r -i -l 1000000 -O /dev/null; exit 0

Now rerun your example (with make hwsim) and change into the hardware folder. There
you start the waveform viewer with:

make view

To watch signals they need to be dropped into the wave window. For example the program
counter (io fedec pc from the fetch component) and some registers (rf 1 and rf 2 from the
register file in component decode/rf). You should be able to see the same register changes as
before, but now with an exact timing, i.e., with the delay between instruction fetch till register
write in the last pipeline stage.

Optional: Tinker with the Patmos Hardware

You can find the hardware description of Patmos in hardware/src/patmos. Each of the 5
pipeline stages is in its own Chisel class (and file). For example, change some instructions
in the Execute stage by manipulating Execute.scala. You could change the addition to a
subtract operation and test it with the basic.s program, or your own assembler test program.

Don’t forget to undo your changes for the next exercises. The Patmos repository is a git
repository. Therefore, undo is easily done with:

git checkout Execute.scala

4 I/O Programming

4.1 Hello World in Assembler

To communicate with the external world, Patmos contains a UART (or serial line) as a minimal
I/O interface. In the real hardware that UART is then connected to the PC for text output and

3



for program download as well. In the simulator the UART output is just echoed to stdout of
the host.

The I/O devices are memory mapped, which means they can be accessed with load and store
instructions. However, Patmos has typed load and store instructions. Therefore, I/O devices
are also mapped into a type. In our case I/O devices are mapped into the local memory areas.
Therefore, use swl as instruction, like:

swl [r7+0] = r9;

This above instruction writes the content of register r9 into a data location at address of
register r7. Find the address of the UART device in the handbook and write a single character
(e.g., ‘*’) to it. The UART is described in the Memory and I/O Subsystem chapter. You can
find a short I/O example in asm/hello.s.

Optional: The Real Hello World

Transmission of characters takes some time and the processor needs to wait till the next char-
acter can be sent. Waiting can be done with a busy loop polling the status register of the UART
(the Transmit ready bit).

4.2 Embedded Hello World in C

Embedded systems are often built bare-bone, that means without an operating system and
maybe even without a standard library. In this example you shall write a the Hello World
example without using printf. That means you access the UART with load and store instruc-
tions, like you did in the assembler example. Remember, the I/O devices are mapped into
local memory space. The Patmos compiler needs to be informed that we do want to access
local memory. This is performed with the help of a little macro:

#include <machine/spm.h>

int main() {

volatile _SPM int *uart_status = (volatile _SPM int *) 0xF0080000;
volatile _SPM int *uart_data = (volatile _SPM int *) 0xF0080004;

Emulator and elf File The emulator can read a standard ELF file. Therefore, we use the
prebuilt emulator of Patmos and compile only C programs. A barebone C program (e.g.,
myhello.c placed in folder c) for the emulator (and the hardware) is compiled with:

make comp APP=myhello

We execute this .elf program with the emulator:

patmos-emulator tmp/myhello.elf

4



or with pasim.
Now start similar to the assembler based Hello World and write a short program to write a

single character to the UART.
As a next step write out a longer string of characters. However, transmission of characters

takes some time and the processor needs to wait till the next character can be sent. Waiting
can be done with a busy loop polling the status register of the UART (the Transmit ready bit).

4.3 Periodic Tasks

Real-time tasks are usually periodic tasks. Therefore, we will program a small example that
uses the Patmos time to execute periodic tasks. First we start with polling of the timer/counter
to generate periodic event. Write out a character about every second. For this polling use the
timer counter and wait until some time elapsed. As we run in a simulation, time elapses way
slower. Therefore, start with short waiting times and increase with error and retry.

With this example you can explore the simulation time difference between the SW simulator
pasim and the hardware generated emulator. Which one is faster? And by how much?

Optional: Periodic Task as Interrupt Handler

Polling consumes computing resources and is only a solution for single tasks. Better is to use
a time interrupt and an interrupt handler for the periodic task. Reprogram the above example
as a timer interrupt handler. You can find an example for interrupt handlers in c/intrs.c.

Having the timer interrupt under control is almost half of a scheduler for a real-time oper-
ating system!

5 Further Steps

After this exercise you master the T-CREST tool flow for the Patmos processor. Next step is
to get an FPGA board, such as the Altera DE2-115, and see the processor executing in real
hardware. From this on you can proceed to extend the processor with your own ideas, explore
the multicore version of Patmos with the real-time network on chip Argo, write your own
operating systems, do WCET analysis with aiT and/or platin, ...

Contributions are always welcome and easy to do with a GitHub pull request. You can
ask questions to the Patmos community via the Patmos mailing list. See: http://patmos.
compute.dtu.dk/.

5

http://patmos.compute.dtu.dk/
http://patmos.compute.dtu.dk/

	Introduction
	Hello World
	Assembler Programming
	I/O Programming
	Hello World in Assembler
	Embedded Hello World in C
	Periodic Tasks

	Further Steps

